Suppr超能文献

比较低通量测序和基因分型用于药物遗传学中的性状定位

Comparing low-pass sequencing and genotyping for trait mapping in pharmacogenetics.

作者信息

Wasik Kaja, Berisa Tomaz, Pickrell Joseph K, Li Jeremiah H, Fraser Dana J, King Karen, Cox Charles

机构信息

Gencove, Inc., New York, NY, 10016, USA.

PAREXEL Genomic Medicine, Durham, NC, 27713, USA.

出版信息

BMC Genomics. 2021 Mar 20;22(1):197. doi: 10.1186/s12864-021-07508-2.

Abstract

BACKGROUND

Low pass sequencing has been proposed as a cost-effective alternative to genotyping arrays to identify genetic variants that influence multifactorial traits in humans. For common diseases this typically has required both large sample sizes and comprehensive variant discovery. Genotyping arrays are also routinely used to perform pharmacogenetic (PGx) experiments where sample sizes are likely to be significantly smaller, but clinically relevant effect sizes likely to be larger.

RESULTS

To assess how low pass sequencing would compare to array based genotyping for PGx we compared a low-pass assay (in which 1x coverage or less of a target genome is sequenced) along with software for genotype imputation to standard approaches. We sequenced 79 individuals to 1x genome coverage and genotyped the same samples on the Affymetrix Axiom Biobank Precision Medicine Research Array (PMRA). We then down-sampled the sequencing data to 0.8x, 0.6x, and 0.4x coverage, and performed imputation. Both the genotype data and the sequencing data were further used to impute human leukocyte antigen (HLA) genotypes for all samples. We compared the sequencing data and the genotyping array data in terms of four metrics: overall concordance, concordance at single nucleotide polymorphisms in pharmacogenetics-related genes, concordance in imputed HLA genotypes, and imputation r. Overall concordance between the two assays ranged from 98.2% (for 0.4x coverage sequencing) to 99.2% (for 1x coverage sequencing), with qualitatively similar numbers for the subsets of variants most important in pharmacogenetics. At common single nucleotide polymorphisms (SNPs), the mean imputation r from the genotyping array was 0.90, which was comparable to the imputation r from 0.4x coverage sequencing, while the mean imputation r from 1x sequencing data was 0.96.

CONCLUSIONS

These results indicate that low-pass sequencing to a depth above 0.4x coverage attains higher power for association studies when compared to the PMRA and should be considered as a competitive alternative to genotyping arrays for trait mapping in pharmacogenetics.

摘要

背景

低深度测序已被提议作为一种经济高效的替代基因分型阵列的方法,用于识别影响人类多因素性状的遗传变异。对于常见疾病,这通常需要大样本量和全面的变异发现。基因分型阵列也经常用于进行药物遗传学(PGx)实验,在这些实验中样本量可能显著较小,但临床相关效应大小可能较大。

结果

为了评估低深度测序与基于阵列的基因分型在PGx方面的比较情况,我们将一种低深度检测方法(对目标基因组进行1倍覆盖或更低覆盖度的测序)以及用于基因型填充的软件与标准方法进行了比较。我们对79名个体进行了1倍基因组覆盖度的测序,并在Affymetrix Axiom生物样本库精准医学研究阵列(PMRA)上对相同样本进行了基因分型。然后,我们将测序数据下采样至0.8倍、0.6倍和0.4倍覆盖度,并进行填充。基因型数据和测序数据都进一步用于对所有样本的人类白细胞抗原(HLA)基因型进行填充。我们从四个指标方面比较了测序数据和基因分型阵列数据:总体一致性、药物遗传学相关基因中单核苷酸多态性的一致性、填充的HLA基因型的一致性以及填充r值。两种检测方法之间的总体一致性范围从98.2%(对于0.4倍覆盖度测序)到99.2%(对于1倍覆盖度测序),对于药物遗传学中最重要的变异子集,数量在性质上相似。在常见的单核苷酸多态性(SNP)方面,基因分型阵列的平均填充r值为0.90,这与0.4倍覆盖度测序的填充r值相当,而1倍测序数据的平均填充r值为0.96。

结论

这些结果表明,与PMRA相比,深度高于0.4倍覆盖度的低深度测序在关联研究中具有更高的效能,并且在药物遗传学的性状定位方面应被视为基因分型阵列的一种有竞争力的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f9c/7981957/0e8ba1868909/12864_2021_7508_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验