Suppr超能文献

分层病理学筛查宫颈异常。

Hierarchical pathology screening for cervical abnormality.

机构信息

Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, China.

Advanced Industrial Technology Research Institute, Shanghai Jiao Tong University, China.

出版信息

Comput Med Imaging Graph. 2021 Apr;89:101892. doi: 10.1016/j.compmedimag.2021.101892. Epub 2021 Mar 11.

Abstract

Cervical smear screening is an imaging-based cancer detection tool, which is of pivotal importance for the early-stage diagnosis. A computer-aided screening system can automatically find out if the scanned whole-slide images (WSI) with cervical cells are classified as "abnormal" or "normal", and then alert pathologists. It can significantly reduce the workload for human experts, and is therefore highly demanded in clinical practice. Most of the screening methods are based on automatic cervical cell detection and classification, but the accuracy is generally limited due to the high variation of cell appearance and lacking context information from the surroundings. Here we propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance of case-level diagnosis and finding suspected "abnormal" cells. Our framework consists of three stages. We commence by extracting a large number of pathology images from the scanned WSIs, and implementing abnormal cell detection to each pathology image. Then, we feed the detected "abnormal" cells with corresponding confidence into our novel classification model for a comprehensive analysis of the extracted pathology images. Finally, we summarize the classification outputs of all extracted images, and determine the overall screening result for the target case. Experiments show that our three-stage hierarchical method can effectively suppress the errors from cell-level detection, and provide an effective and robust way for cervical abnormality screening.

摘要

宫颈涂片筛查是一种基于成像的癌症检测工具,对于早期诊断至关重要。计算机辅助筛查系统可以自动找出扫描的宫颈细胞全玻片图像(WSI)是否被归类为“异常”或“正常”,然后提醒病理学家。它可以显著减轻人类专家的工作量,因此在临床实践中需求量很大。大多数筛查方法都是基于自动宫颈细胞检测和分类,但由于细胞外观的高度变化和缺乏周围环境的上下文信息,准确性通常受到限制。在这里,我们提出了一种用于自动宫颈涂片筛查的新颖的分层框架,旨在实现病例级诊断和发现可疑“异常”细胞的稳健性能。我们的框架由三个阶段组成。我们首先从扫描的 WSI 中提取大量病理学图像,并对每张病理学图像进行异常细胞检测。然后,我们将检测到的“异常”细胞及其相应的置信度输入到我们的新型分类模型中,以对提取的病理学图像进行全面分析。最后,我们总结所有提取图像的分类输出,并确定目标病例的整体筛查结果。实验表明,我们的三阶段分层方法可以有效地抑制细胞级检测的误差,并为宫颈异常筛查提供一种有效和稳健的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验