Suppr超能文献

宫颈病理图像中的细胞分组检测与混淆标签校正

Cells Grouping Detection and Confusing Labels Correction on Cervical Pathology Images.

作者信息

Pang Wenbo, Ma Yi, Jiang Huiyan, Yu Qiming

机构信息

Software College, Northeastern University, Shenyang 110819, China.

Information and Engineering College, Wenzhou Medical University, Wenzhou 325035, China.

出版信息

Bioengineering (Basel). 2024 Dec 30;12(1):23. doi: 10.3390/bioengineering12010023.

Abstract

Cervical cancer is one of the most prevalent cancers among women, posing a significant threat to their health. Early screening can detect cervical precancerous lesions in a timely manner, thereby enabling the prevention or treatment of the disease. The use of pathological image analysis technology to automatically interpret cells in pathological slices is a hot topic in digital medicine research, as it can reduce the substantial effort required from pathologists to identify cells and can improve diagnostic efficiency and accuracy. Therefore, we propose a cervical cell detection network based on collecting prior knowledge and correcting confusing labels, called PGCC-Net. Specifically, we utilize clinical prior knowledge to break down the detection task into multiple sub-tasks for cell grouping detection, aiming to more effectively learn the specific structure of cells. Subsequently, we merge region proposals from grouping detection to achieve refined detection. In addition, according to the Bethesda system, clinical definitions among various categories of abnormal cervical cells are complex, and their boundaries are ambiguous. Differences in assessment criteria among pathologists result in ambiguously labeled cells, which poses a significant challenge for deep learning networks. To address this issue, we perform a labels correction module with feature similarity by constructing feature centers for typical cells in each category. Then, cells that are easily confused are mapped with these feature centers in order to update cells' annotations. Accurate cell labeling greatly aids the classification head of the detection network. We conducted experimental validation on a public dataset of 7410 images and a private dataset of 13,526 images. The results indicate that our model outperforms the state-of-the-art cervical cell detection methods.

摘要

宫颈癌是女性中最常见的癌症之一,对她们的健康构成重大威胁。早期筛查能够及时检测出宫颈癌前病变,从而实现疾病的预防或治疗。利用病理图像分析技术自动解读病理切片中的细胞是数字医学研究中的一个热门话题,因为它可以减少病理学家识别细胞所需的大量精力,并提高诊断效率和准确性。因此,我们提出了一种基于收集先验知识和纠正混淆标签的宫颈细胞检测网络,称为PGCC-Net。具体来说,我们利用临床先验知识将检测任务分解为多个用于细胞分组检测的子任务,旨在更有效地学习细胞的特定结构。随后,我们合并分组检测的区域提议以实现精确检测。此外,根据贝塞斯达系统,各类异常宫颈细胞之间的临床定义复杂,其界限模糊。病理学家评估标准的差异导致细胞标签模糊,这对深度学习网络构成了重大挑战。为了解决这个问题,我们通过为每个类别中的典型细胞构建特征中心来执行具有特征相似性的标签校正模块。然后,将容易混淆的细胞与这些特征中心进行映射,以更新细胞的注释。准确的细胞标签极大地有助于检测网络的分类头。我们在一个包含7410张图像的公共数据集和一个包含13526张图像的私有数据集上进行了实验验证。结果表明,我们的模型优于当前最先进的宫颈细胞检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da8/11762132/c42ef1922b89/bioengineering-12-00023-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验