Suppr超能文献

重新编程噬菌体宿主范围:工程受体结合蛋白的设计原则和策略。

Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins.

机构信息

Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.

Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.

出版信息

Curr Opin Biotechnol. 2021 Apr;68:272-281. doi: 10.1016/j.copbio.2021.02.006. Epub 2021 Mar 18.

Abstract

Bacteriophages (phages) use specialized tail machinery to deliver proteins and genetic material into a bacterial cell during infection. Attached at the distal ends of their tails are receptor binding proteins (RBPs) that recognize specific molecules exposed on host bacteria surfaces. Since the therapeutic capacity of naturally occurring phages is often limited by narrow host ranges, there is significant interest in expanding their host range via directed evolution or structure-guided engineering of their RBPs. Here, we describe the design principles of different RBP engineering platforms and draw attention to the mechanisms linking RBP binding and the correct spatial and temporal attachment of the phage to the bacterial surface. A deeper understanding of these mechanisms will directly benefit future engineering of more effective phage-based therapeutics.

摘要

噬菌体(phages)在感染过程中使用专门的尾部机制将蛋白质和遗传物质递送到细菌细胞内。它们的尾部末端附着有受体结合蛋白(RBPs),能够识别宿主细菌表面暴露的特定分子。由于天然噬菌体的治疗能力常常受到宿主范围狭窄的限制,因此通过定向进化或对其 RBPs 进行结构导向工程来扩大其宿主范围具有重要意义。在这里,我们描述了不同 RBP 工程平台的设计原则,并提请注意将 RBP 结合与噬菌体正确地在空间和时间上附着到细菌表面的机制联系起来。对这些机制的更深入理解将直接有益于未来更有效的基于噬菌体的治疗方法的工程设计。

相似文献

8
[Advances of phage receptor binding proteins].[噬菌体受体结合蛋白的研究进展]
Sheng Wu Gong Cheng Xue Bao. 2021 Aug 25;37(8):2614-2622. doi: 10.13345/j.cjb.200576.

引用本文的文献

4
Risk Profile of Bacteriophages in the Food Chain.食物链中噬菌体的风险概况。
Foods. 2025 Jun 26;14(13):2257. doi: 10.3390/foods14132257.
6
Complete genome sequences of phages Huey, Dewey, and Louie.噬菌体休伊、杜威和路易的全基因组序列。
Microbiol Resour Announc. 2025 Jul 10;14(7):e0027025. doi: 10.1128/mra.00270-25. Epub 2025 Jun 18.
7
Optimizing phage therapy with artificial intelligence: a perspective.利用人工智能优化噬菌体疗法:一种观点。
Front Cell Infect Microbiol. 2025 May 27;15:1611857. doi: 10.3389/fcimb.2025.1611857. eCollection 2025.
9
Physicochemical, genomic, and phenotypic characterization of phage BME3.噬菌体BME3的物理化学、基因组和表型特征
Microbiol Spectr. 2025 Jul;13(7):e0130124. doi: 10.1128/spectrum.01301-24. Epub 2025 May 22.

本文引用的文献

7
Action of a minimal contractile bactericidal nanomachine.最小收缩杀菌纳米机器的作用。
Nature. 2020 Apr;580(7805):658-662. doi: 10.1038/s41586-020-2186-z. Epub 2020 Apr 15.
8
Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber.噬菌体长尾纤维受体结合模块的分子解剖学。
PLoS Pathog. 2019 Dec 19;15(12):e1008193. doi: 10.1371/journal.ppat.1008193. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验