Suppr超能文献

噬菌体模块化受体结合蛋白的工程改造改变了其囊膜血清型特异性。

Engineering the Modular Receptor-Binding Proteins of Phages Switches Their Capsule Serotype Specificity.

机构信息

Department of Biotechnology, Ghent University, Ghent, Belgium.

Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland.

出版信息

mBio. 2021 May 4;12(3):e00455-21. doi: 10.1128/mBio.00455-21.

Abstract

The high specificity of bacteriophages is driven by their receptor-binding proteins (RBPs). Many bacteriophages target the capsular exopolysaccharide as the receptor and encode RBPs with depolymerase activity. The modular structure of these RBPs with an N-terminal structural module to attach the RBP to the phage tail, and a C-terminal specificity module for exopolysaccharide degradation, supports horizontal transfer as a major evolutionary driver for phage RBPs. We mimicked this natural evolutionary process by the construction of modular RBP chimeras, exchanging N-terminal structural modules and C-terminal specificity modules. All chimeras strictly follow the capsular serotype specificity of the C-terminal module. Transplanting chimeras with a K11 N-terminal structural RBP module in a phage K11 scaffold results in a capsular serotype switch and corresponding host range modification of the synthetic phages, demonstrating that horizontal transfer of C-terminal specificity modules offers phages an evolutionary highway for rapid adaptation to new capsular serotypes. The antimicrobial resistance crisis has rekindled interest in bacteriophage therapy. Phages have been studied over a century as therapeutics to treat bacterial infections, but one of the biggest challenges for the use of phages in therapeutic interventions remains their high specificity. In particular, many phages have a narrow spectrum constrained by the high diversity of exopolysaccharide capsules that shield access to the cells. In this work, we have elaborated how phages deal with this high diversity by exchanging building blocks of their receptor-binding proteins.

摘要

噬菌体的高特异性是由其受体结合蛋白(RBPs)驱动的。许多噬菌体将荚膜外多糖作为受体,并编码具有解聚酶活性的 RBPs。这些 RBP 的模块化结构具有一个 N 端结构模块,用于将 RBP 连接到噬菌体尾部,以及一个 C 端特异性模块,用于外多糖降解,支持水平转移作为噬菌体 RBP 的主要进化驱动力。我们通过构建模块化 RBP 嵌合体来模拟这个自然的进化过程,交换 N 端结构模块和 C 端特异性模块。所有嵌合体都严格遵循 C 端模块的荚膜血清型特异性。在噬菌体 K11 支架中移植具有 K11 N 端结构 RBP 模块的嵌合体导致荚膜血清型转变,以及合成噬菌体的相应宿主范围修饰,证明 C 端特异性模块的水平转移为噬菌体提供了快速适应新荚膜血清型的进化高速公路。抗菌药物耐药性危机重新激发了人们对噬菌体治疗的兴趣。噬菌体作为治疗细菌感染的药物已经研究了一个多世纪,但噬菌体在治疗干预中的应用面临的最大挑战之一仍然是它们的高特异性。特别是,许多噬菌体的广谱性受到荚膜外多糖胶囊多样性的限制,这些多糖胶囊阻碍了噬菌体进入细胞。在这项工作中,我们详细阐述了噬菌体如何通过交换受体结合蛋白的构建块来应对这种高度多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5594/8262889/b85e2b3c19f3/mbio.00455-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验