Kontopoulou Eugenia-Maria, Dexter Gregory-Paul, Szpankowski Wojciech, Grama Ananth, Drineas Petros
Department of Computer Science, Purdue University, West Lafayette, IN, 47906 USA.
IEEE Trans Inf Theory. 2020;66(8):5003-5021. doi: 10.1109/tit.2020.2971991. Epub 2018 Aug 16.
The , named after John von Neumann, is an extension of the classical concept of entropy to the field of quantum mechanics. From a numerical perspective, von Neumann entropy can be computed simply by computing all eigenvalues of a density matrix, an operation that could be prohibitively expensive for large-scale density matrices. We present and analyze three randomized algorithms to approximate von Neumann entropy of real density matrices: our algorithms leverage recent developments in the Randomized Numerical Linear Algebra (RandNLA) literature, such as randomized trace estimators, provable bounds for the power method, and the use of random projections to approximate the eigenvalues of a matrix. All three algorithms come with provable accuracy guarantees and our experimental evaluations support our theoretical findings showing considerable speedup with small loss in accuracy.
以约翰·冯·诺依曼命名的冯·诺依曼熵,是经典熵概念在量子力学领域的扩展。从数值角度来看,冯·诺依曼熵可以通过计算密度矩阵的所有特征值来简单计算,对于大规模密度矩阵而言,此操作成本可能高得令人望而却步。我们提出并分析了三种用于近似实密度矩阵冯·诺依曼熵的随机算法:我们的算法利用了随机数值线性代数(RandNLA)文献中的最新进展,例如随机迹估计器、幂法的可证界以及使用随机投影来近似矩阵的特征值。所有这三种算法都具有可证的精度保证,并且我们的实验评估支持我们的理论发现,即显示出在精度损失较小的情况下有显著的加速。