Kaushal Sujay S, Wood Kelsey L, Galella Joseph G, Gion Austin M, Haq Shahan, Goodling Phillip J, Haviland Katherine A, Reimer Jenna E, Morel Carol J, Wessel Barret, Nguyen William, Hollingsworth John W, Mei Kevin, Leal Julian, Widmer Jacob, Sharif Rahat, Mayer Paul M, Johnson Tamara A Newcomer, Newcomb Katie Delaney, Smith Evan, Belt Kenneth T
Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA.
Appl Geochem. 2020 Aug 1;119:1-104632. doi: 10.1016/j.apgeochem.2020.104632.
Urbanization contributes to the formation of novel elemental combinations and signatures in terrestrial and aquatic watersheds, also known as 'chemical cocktails.' The composition of chemical cocktails evolves across space and time due to: (1) elevated concentrations from anthropogenic sources, (2) accelerated weathering and corrosion of the built environment, (3) increased drainage density and intensification of urban water conveyance systems, and (4) enhanced rates of geochemical transformations due to changes in temperature, ionic strength, pH, and redox potentials. Characterizing chemical cocktails and underlying geochemical processes is necessary for: (1) tracking pollution sources using complex chemical mixtures instead of individual elements or compounds; (2) developing new strategies for co-managing groups of contaminants; (3) identifying proxies for predicting transport of chemical mixtures using continuous sensor data; and (4) determining whether interactive effects of chemical cocktails produce ecosystem-scale impacts greater than the sum of individual chemical stressors. First, we discuss some unique urban geochemical processes which form chemical cocktails, such as urban soil formation, human-accelerated weathering, urban acidification-alkalinization, and freshwater salinization syndrome. Second, we review and synthesize global patterns in concentrations of major ions, carbon and nutrients, and trace elements in urban streams across different world regions and make comparisons with reference conditions. In addition to our global analysis, we highlight examples from some watersheds in the Baltimore-Washington DC region, which show increased transport of major ions, trace metals, and nutrients across streams draining a well-defined land-use gradient. Urbanization increased the concentrations of multiple major and trace elements in streams draining human-dominated watersheds compared to reference conditions. Chemical cocktails of major and trace elements were formed over diurnal cycles coinciding with changes in streamflow, dissolved oxygen, pH, and other variables measured by high-frequency sensors. Some chemical cocktails of major and trace elements were also significantly related to specific conductance (p<0.05), which can be measured by sensors. Concentrations of major and trace elements increased, peaked, or decreased longitudinally along streams as watershed urbanization increased, which is consistent with distinct shifts in chemical mixtures upstream and downstream of other major cities in the world. Our global analysis of urban streams shows that concentrations of multiple elements along the Periodic Table significantly increase when compared with reference conditions. Furthermore, similar biogeochemical patterns and processes can be grouped among distinct mixtures of elements of major ions, dissolved organic matter, nutrients, and trace elements as chemical cocktails. Chemical cocktails form in urban waters over diurnal cycles, decades, and throughout drainage basins. We conclude our global review and synthesis by proposing strategies for monitoring and managing chemical cocktails using source control, ecosystem restoration, and green infrastructure. We discuss future research directions applying the watershed chemical cocktail approach to diagnose and manage environmental problems. Ultimately, a chemical cocktail approach targeting sources, transport, and transformations of different and distinct elemental combinations is necessary to more holistically monitor and manage the emerging impacts of chemical mixtures in the world's fresh waters.
城市化导致陆地和水域流域中形成新的元素组合和特征,即所谓的“化学混合物”。化学混合物的组成随时间和空间而变化,原因如下:(1)人为源导致浓度升高;(2)建筑环境的风化和腐蚀加速;(3)排水密度增加以及城市输水系统强化;(4)温度、离子强度、pH值和氧化还原电位变化导致地球化学转化速率加快。了解化学混合物及其潜在的地球化学过程对于以下方面很有必要:(1)利用复杂化学混合物而非单个元素或化合物追踪污染源;(2)制定共同管理污染物组的新策略;(3)利用连续传感器数据确定预测化学混合物传输的指标;(4)确定化学混合物的交互作用是否会产生大于单个化学应激源总和的生态系统规模影响。首先,我们讨论一些形成化学混合物的独特城市地球化学过程,如城市土壤形成、人类加速风化、城市酸化 - 碱化以及淡水盐化综合征。其次,我们回顾并综合了不同世界区域城市溪流中主要离子、碳和养分以及微量元素浓度的全球模式,并与参考条件进行比较。除了全球分析外,我们还重点介绍了巴尔的摩 - 华盛顿特区地区一些流域的例子,这些例子表明,在流经明确土地利用梯度的溪流中,主要离子、微量金属和养分的传输增加。与参考条件相比,城市化使流经人类主导流域的溪流中多种主要和微量元素的浓度增加。主要和微量元素的化学混合物在与溪流流量、溶解氧、pH值和高频传感器测量的其他变量变化相吻合的昼夜周期内形成。一些主要和微量元素的化学混合物也与电导率显著相关(p<0.05),电导率可由传感器测量。随着流域城市化程度的提高,主要和微量元素的浓度沿溪流纵向增加、达到峰值或降低,这与世界其他主要城市上下游化学混合物的明显变化一致。我们对城市溪流的全球分析表明,与参考条件相比,元素周期表上多种元素的浓度显著增加。此外,作为化学混合物,主要离子、溶解有机物、养分和微量元素的不同组合之间可以归为相似的生物地球化学模式和过程。化学混合物在城市水体的昼夜周期、数十年以及整个流域内形成。我们通过提出利用源头控制、生态系统恢复和绿色基础设施监测和管理化学混合物的策略来结束我们的全球综述和综合分析。我们讨论了应用流域化学混合物方法诊断和管理环境问题的未来研究方向。最终,针对不同和独特元素组合的来源、传输和转化的化学混合物方法对于更全面地监测和管理世界淡水中化学混合物的新出现影响是必要的。