Ma Justin H, Sefati Shahriar, Taylor Russell H, Armand Mehran
Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
IEEE Robot Autom Lett. 2021 Apr;6(2):1622-1629. doi: 10.1109/lra.2021.3059634. Epub 2021 Feb 16.
This paper presents the development and experimental evaluation of an active steering hand-held robotic system for milling and curved drilling in minimally invasive orthopaedic interventions. The system comprises a cable-driven continuum dexterous manipulator (CDM), an actuation unit with a handpiece, and a flexible, rotary cutting tool. Compared to conventional rigid drills, the proposed system enhances dexterity and reach in confined spaces in surgery, while providing direct control to the surgeon with sufficient stability while cutting/milling hard tissue. Of note, for cases that require precise motion, the system is able to be mounted on a positioning robot for additional controllability. A proportional-derivative (PD) controller for regulating drive cable tension is proposed for the stable steering of the CDM during cutting operations. The robotic system is characterized and tested with various tool rotational speeds and cable tensions, demonstrating successful cutting of three-dimensional and curvilinear tool paths in simulated cancellous bone and bone phantom. Material removal rates (MRRs) of up to 571 mm/s are achieved for stable cutting, demonstrating great improvement over previous related works.
本文介绍了一种用于微创骨科手术中铣削和曲线钻孔的主动转向手持式机器人系统的开发和实验评估。该系统包括一个电缆驱动的连续体灵巧机械手(CDM)、一个带有手持件的驱动单元以及一个柔性旋转切割工具。与传统的刚性钻头相比,该系统提高了手术中在狭窄空间内的灵活性和可达性,同时在切割/铣削硬组织时为外科医生提供了具有足够稳定性的直接控制。值得注意的是,对于需要精确运动的情况,该系统能够安装在定位机器人上以实现额外的可控性。提出了一种用于调节驱动电缆张力的比例-微分(PD)控制器,以在切割操作期间实现CDM的稳定转向。该机器人系统在各种刀具转速和电缆张力下进行了表征和测试,证明了在模拟松质骨和骨模型中成功切割三维和曲线刀具路径。稳定切割时的材料去除率(MRR)高达571毫米/秒,表明与先前的相关工作相比有了很大改进。