Suppr超能文献

用于推断连续因果过程的时空、概率和协变信息的发展

The Development of Spatial-Temporal, Probability, and Covariation Information to Infer Continuous Causal Processes.

作者信息

Dündar-Coecke Selma, Tolmie Andrew, Schlottmann Anne

机构信息

Centre for Educational Neuroscience and Department of Psychology and Human Development, UCL Institute of Education, University College London, London, United Kingdom.

Department of Experimental Psychology, University College London, London, United Kingdom.

出版信息

Front Psychol. 2021 Mar 5;12:525195. doi: 10.3389/fpsyg.2021.525195. eCollection 2021.

Abstract

This paper considers how 5- to 11-year-olds' verbal reasoning about the causality underlying extended, dynamic natural processes links to various facets of their statistical thinking. Such continuous processes typically do not provide perceptually distinct causes and effect, and previous work suggests that spatial-temporal analysis, the ability to analyze spatial configurations that change over time, is a crucial predictor of reasoning about causal mechanism in such situations. Work in the Humean tradition to causality has long emphasized on the importance of statistical thinking for inferring causal links between distinct cause and effect events, but here we assess whether this is also viable for causal thinking about continuous processes. Controlling for verbal and non-verbal ability, two studies ( = 107; = 124) administered a battery of covariation, probability, spatial-temporal, and causal measures. Results indicated that spatial-temporal analysis was the best predictor of causal thinking across both studies, but statistical thinking supported and informed spatial-temporal analysis: covariation assessment potentially assists with the identification of variables, while simple probability judgment potentially assists with thinking about unseen mechanisms. We conclude that the ability to find out patterns in data is even more widely important for causal analysis than commonly assumed, from childhood, having a role to play not just when causally linking already distinct events but also when analyzing the causal process underlying extended dynamic events without perceptually distinct components.

摘要

本文探讨了5至11岁儿童对扩展的、动态自然过程背后因果关系的语言推理如何与他们统计思维的各个方面相联系。这类连续过程通常不会提供在感知上截然不同的原因和结果,先前的研究表明,时空分析,即分析随时间变化的空间构型的能力,是在这种情况下对因果机制进行推理的关键预测指标。休谟传统中关于因果关系的研究长期以来一直强调统计思维对于推断不同因果事件之间因果联系的重要性,但在此我们评估这对于关于连续过程的因果思维是否也可行。在控制了语言和非语言能力的情况下,两项研究(N1 = 107;N2 = 124)实施了一系列协变、概率、时空和因果测量。结果表明,在两项研究中,时空分析都是因果思维的最佳预测指标,但统计思维支持并为时空分析提供信息:协变评估可能有助于识别变量,而简单概率判断可能有助于思考潜在机制。我们得出结论,从儿童时期起,在数据中发现模式的能力对于因果分析的重要性比通常认为的更为广泛,它不仅在因果关联已经不同的事件时发挥作用,而且在分析没有明显可感知成分的扩展动态事件背后的因果过程时也发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ea/7973365/aac6cb8ef537/fpsyg-12-525195-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验