Suppr超能文献

一种基于深度学习的复杂工业过程故障预测与原因识别方法。

A Fault Prediction and Cause Identification Approach in Complex Industrial Processes Based on Deep Learning.

作者信息

Li Yao

机构信息

School of Computer Science and Engineering, Northeastern University, Liao Ning, China.

出版信息

Comput Intell Neurosci. 2021 Mar 5;2021:6612342. doi: 10.1155/2021/6612342. eCollection 2021.

Abstract

Faults occurring in the production line can cause many losses. Predicting the fault events before they occur or identifying the causes can effectively reduce such losses. A modern production line can provide enough data to solve the problem. However, in the face of complex industrial processes, this problem will become very difficult depending on traditional methods. In this paper, we propose a new approach based on a deep learning (DL) algorithm to solve the problem. First, we regard these process data as a spatial sequence according to the production process, which is different from traditional time series data. Second, we improve the long short-term memory (LSTM) neural network in an encoder-decoder model to adapt to the branch structure, corresponding to the spatial sequence. Meanwhile, an attention mechanism (AM) algorithm is used in fault detection and cause identification. Third, instead of traditional biclassification, the output is defined as a sequence of fault types. The approach proposed in this article has two advantages. On the one hand, treating data as a spatial sequence rather than a time sequence can overcome multidimensional problems and improve prediction accuracy. On the other hand, in the trained neural network, the weight vectors generated by the AM algorithm can represent the correlation between faults and the input data. This correlation can help engineers identify the cause of faults. The proposed approach is compared with some well-developed fault diagnosing methods in the Tennessee Eastman process. Experimental results show that the approach has higher prediction accuracy, and the weight vector can accurately label the factors that cause faults.

摘要

生产线上出现的故障会导致诸多损失。在故障事件发生之前进行预测或找出其原因能够有效减少此类损失。一条现代化的生产线能够提供足够的数据来解决该问题。然而,面对复杂的工业流程,依靠传统方法解决这个问题会变得非常困难。在本文中,我们提出一种基于深度学习(DL)算法的新方法来解决该问题。首先,我们根据生产流程将这些过程数据视为空间序列,这与传统的时间序列数据不同。其次,我们在编码器 - 解码器模型中改进长短期记忆(LSTM)神经网络,以适应对应于空间序列的分支结构。同时,在故障检测和原因识别中使用注意力机制(AM)算法。第三,输出被定义为故障类型序列,而不是传统的二分类。本文提出的方法有两个优点。一方面,将数据视为空间序列而非时间序列能够克服多维问题并提高预测精度。另一方面,在经过训练的神经网络中,AM算法生成的权重向量能够表示故障与输入数据之间的相关性。这种相关性可以帮助工程师识别故障原因。在田纳西 - 伊士曼过程中,将所提出的方法与一些成熟的故障诊断方法进行了比较。实验结果表明,该方法具有更高的预测精度,并且权重向量能够准确标记导致故障的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ddb/7954619/da9a4bbf7276/CIN2021-6612342.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验