Wang Jin, Wang Yan, Yu Junhui, Li Qingping, Wang Hailin, Zhou Xinzhi
School of Electronic Information, Sichuan University, Chengdu 610065, China.
National Key Laboratory of Science and Technology on Reactor System Design Technology, Nuclear Power Institute of China, Chengdu 610213, China.
Sensors (Basel). 2025 Jun 17;25(12):3789. doi: 10.3390/s25123789.
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) to another condition (target domain). Furthermore, the lack of sufficient labeled data in the target domain further complicates fault diagnosis under varying operating conditions. To address this issue, this paper proposes a spatiotemporal feature fusion domain-adaptive network (STFDAN) framework for bearing fault diagnosis under varying operating conditions. The framework constructs a feature extraction and domain adaptation network based on a parallel architecture, designed to capture the complex dynamic characteristics of vibration signals. First, the Fast Fourier Transform (FFT) and Variational Mode Decomposition (VMD) are used to extract the spectral and modal features of the signals, generating a joint representation with multi-level information. Then, a parallel processing mechanism of the Convolutional Neural Network (SECNN) based on the Squeeze-and-Excitation module and the Bidirectional Long Short-Term Memory network (BiLSTM) is employed to dynamically adjust weights, capturing high-dimensional spatiotemporal features. The cross-attention mechanism enables the interaction and fusion of spatial and temporal features, significantly enhancing the complementarity and coupling of the feature representations. Finally, a Multi-Kernel Maximum Mean Discrepancy (MKMMD) is introduced to align the feature distributions between the source and target domains, enabling efficient fault diagnosis under varying bearing conditions. The proposed STFDAN framework is evaluated using bearing datasets from Case Western Reserve University (CWRU), Jiangnan University (JNU), and Southeast University (SEU). Experimental results demonstrate that STFDAN achieves high diagnostic accuracy across different load conditions and effectively solves the bearing fault diagnosis problem under varying operating conditions.
在实际场景中,轴承的转速是可变的。由于运行条件的变化,轴承振动数据的特征分布变得不一致,这导致无法直接将在一种运行条件(源域)下构建的训练模型应用于另一种条件(目标域)。此外,目标域中缺乏足够的标注数据进一步使变工况下的故障诊断变得复杂。为了解决这个问题,本文提出了一种用于变工况下轴承故障诊断的时空特征融合域自适应网络(STFDAN)框架。该框架基于并行架构构建了一个特征提取和域自适应网络,旨在捕捉振动信号的复杂动态特征。首先,使用快速傅里叶变换(FFT)和变分模态分解(VMD)来提取信号的频谱和模态特征,生成具有多级信息的联合表示。然后,采用基于挤压与激励模块的卷积神经网络(SECNN)和双向长短期记忆网络(BiLSTM)的并行处理机制来动态调整权重,捕捉高维时空特征。交叉注意力机制实现了空间和时间特征的交互与融合,显著增强了特征表示的互补性和耦合性。最后,引入多核最大均值差异(MKMMD)来对齐源域和目标域之间的特征分布,从而在变轴承工况下实现高效的故障诊断。使用来自美国凯斯西储大学(CWRU)、江南大学(JNU)和东南大学(SEU)的轴承数据集对所提出的STFDAN框架进行了评估。实验结果表明,STFDAN在不同负载条件下均实现了高诊断准确率,并有效解决了变工况下的轴承故障诊断问题。