Vijayan Vipin, Gu Shawn, Krebs Eric T, Meng Lei, MilenkoviĆ Tijana
Center for Network and Data Science, Department of Computer Science and Engineering, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.
IEEE Access. 2020;8:41961-41974. doi: 10.1109/access.2020.2976487. Epub 2020 Feb 27.
Biological network alignment (NA) aims to identify similar regions between molecular networks of different species. NA can be local or global. Just as the recent trend in the NA field, we also focus on global NA, which can be pairwise (PNA) and multiple (MNA). PNA produces aligned node pairs between two networks. MNA produces aligned node clusters between more than two networks. Recently, the focus has shifted from PNA to MNA, because MNA captures conserved regions between more networks than PNA (and MNA is thus hypothesized to yield higher-quality alignments), though at higher computational complexity. The issue is that, due to the different outputs of PNA and MNA, a PNA method is only compared to other PNA methods, and an MNA method is only compared to other MNA methods. Comparison of PNA against MNA must be done to evaluate whether MNA indeed yields higher-quality alignments, as only this would justify MNA's higher computational complexity. We introduce a framework that allows for this. We evaluate eight prominent PNA and MNA methods, on synthetic and real-world biological networks, using topological and functional alignment quality measures. We compare PNA against MNA in both a pairwise (native to PNA) and multiple (native to MNA) manner. PNA is expected to perform better under the pairwise evaluation framework. Indeed this is what we find. MNA is expected to perform better under the multiple evaluation framework. Shockingly, we find this not always to hold; PNA is often better than MNA in this framework, depending on the choice of evaluation test.
生物网络比对(NA)旨在识别不同物种分子网络之间的相似区域。NA 可以是局部的或全局的。正如 NA 领域的最新趋势一样,我们也专注于全局 NA,它可以是成对的(PNA)和多重的(MNA)。PNA 在两个网络之间生成对齐的节点对。MNA 在两个以上的网络之间生成对齐的节点簇。最近,重点已从 PNA 转移到 MNA,因为 MNA 比 PNA 能捕获更多网络之间的保守区域(因此假设 MNA 能产生更高质量的比对),尽管计算复杂度更高。问题在于,由于 PNA 和 MNA 的输出不同,一种 PNA 方法仅与其他 PNA 方法进行比较,一种 MNA 方法仅与其他 MNA 方法进行比较。必须对 PNA 和 MNA 进行比较,以评估 MNA 是否确实能产生更高质量的比对,因为只有这样才能证明 MNA 更高的计算复杂度是合理的。我们引入了一个允许进行这种比较的框架。我们使用拓扑和功能比对质量度量,在合成和真实世界的生物网络上评估了八种著名的 PNA 和 MNA 方法。我们以成对(PNA 固有的)和多重(MNA 固有的)方式将 PNA 与 MNA 进行比较。预计 PNA 在成对评估框架下表现更好。事实上,我们发现确实如此。预计 MNA 在多重评估框架下表现更好。令人惊讶的是,我们发现情况并非总是如此;在这个框架中,根据评估测试的选择,PNA 往往比 MNA 更好。