文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

网络生物学的当前与未来发展方向。

Current and future directions in network biology.

作者信息

Zitnik Marinka, Li Michelle M, Wells Aydin, Glass Kimberly, Morselli Gysi Deisy, Krishnan Arjun, Murali T M, Radivojac Predrag, Roy Sushmita, Baudot Anaïs, Bozdag Serdar, Chen Danny Z, Cowen Lenore, Devkota Kapil, Gitter Anthony, Gosline Sara J C, Gu Pengfei, Guzzi Pietro H, Huang Heng, Jiang Meng, Kesimoglu Ziynet Nesibe, Koyuturk Mehmet, Ma Jian, Pico Alexander R, Pržulj Nataša, Przytycka Teresa M, Raphael Benjamin J, Ritz Anna, Sharan Roded, Shen Yang, Singh Mona, Slonim Donna K, Tong Hanghang, Yang Xinan Holly, Yoon Byung-Jun, Yu Haiyuan, Milenković Tijana

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States.

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States.

出版信息

Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.


DOI:10.1093/bioadv/vbae099
PMID:39143982
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11321866/
Abstract

SUMMARY: Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. AVAILABILITY AND IMPLEMENTATION: Not applicable.

摘要

摘要:网络生物学是一个跨学科领域,连接了计算科学和生物科学,已被证明在推动跨生物系统和尺度理解细胞功能和疾病方面起着关键作用。尽管该领域已经存在了二十年,但仍处于起步阶段。它经历了快速发展,同时也伴随着新出现的挑战。这些挑战源于多种因素,特别是数据的复杂性和体量不断增加,以及描述不同生物组织层次的数据类型的多样性不断提高。我们讨论了网络生物学中当前的研究方向,重点是分子/细胞网络,但也涉及其他生物网络类型,如生物医学知识图谱、患者相似性网络、脑网络以及与疾病传播相关的社会/接触网络。更详细地说,我们强调了生物网络的推理和比较、多模态数据整合与异构网络、高阶网络分析、网络上的机器学习以及基于网络的个性化医学等领域。在概述了这五个领域的近期突破之后,我们对网络生物学的未来方向提出了展望。此外,我们还讨论了科学界、教育举措以及在该领域促进多样性的重要性。本文为网络生物学的近期和长期愿景制定了路线图。 可用性和实施情况:不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/b1cc0446f1d0/vbae099f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/c7ee1bc163c1/vbae099f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/c6e5141a5fbe/vbae099f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/e58df6eb30c6/vbae099f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/6da4b1bdf229/vbae099f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/50cc790ddc85/vbae099f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/b1cc0446f1d0/vbae099f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/c7ee1bc163c1/vbae099f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/c6e5141a5fbe/vbae099f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/e58df6eb30c6/vbae099f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/6da4b1bdf229/vbae099f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/50cc790ddc85/vbae099f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/11321866/b1cc0446f1d0/vbae099f6.jpg

相似文献

[1]
Current and future directions in network biology.

Bioinform Adv. 2024-8-14

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Short-Term Memory Impairment

2025-1

[4]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[6]
Systemic Inflammatory Response Syndrome

2025-1

[7]
Group-based interventions to reduce gambling involvement among male football fans: a synopsis of findings from a feasibility study.

Public Health Res (Southampt). 2025-7

[8]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[9]
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.

Health Technol Assess. 2024-10

[10]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

引用本文的文献

[1]
Metabolic Effects of Healing Touch During Cervical Cancer Treatment: An Exploratory Analysis.

Integr Cancer Ther. 2025

[2]
Lost in .*VCF Translation. From Data Fragmentation to Precision Genomics: Technical, Ethical, and Interpretive Challenges in the Post-Sequencing Era.

J Pers Med. 2025-8-20

[3]
Generating random graphs with prescribed graphlet frequency bounds derived from probabilistic networks.

PLoS One. 2025-8-26

[4]
Spectral divergence prioritizes key classes, genes, and pathways shared between substance use disorders and cardiovascular disease.

Front Neurosci. 2025-7-22

[5]
Unavailability of experimental 3D structural data on protein folding dynamics and necessity for a new generation of structure prediction methods in this context.

ArXiv. 2025-7-10

[6]
Computational modeling of infectious diseases: insights from network-based simulations on measles.

BMC Med Inform Decis Mak. 2025-7-1

[7]
Candidate Key Proteins of Tinnitus in the Auditory and Motor Systems of the Thalamus.

Int J Mol Sci. 2025-6-17

[8]
Influence of multi-species data on gene-disease associations in substance use disorder using random walk with restart models.

PLoS One. 2025-6-16

[9]
Bias-aware training and evaluation of link prediction algorithms in network biology.

Proc Natl Acad Sci U S A. 2025-6-17

[10]
Universal multilayer network embedding reveals a causal link between GABA neurotransmitter and cancer.

BMC Bioinformatics. 2025-6-2

本文引用的文献

[1]
Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer.

Med Image Comput Comput Assist Interv. 2022-9

[2]
Contextual AI models for single-cell protein biology.

Nat Methods. 2024-8

[3]
Enhancing Gene Co-Expression Network Inference for the Malaria Parasite .

Genes (Basel). 2024-5-25

[4]
The axes of biology: a novel axes-based network embedding paradigm to decipher the functional mechanisms of the cell.

Bioinform Adv. 2024-5-23

[5]
Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature. 2024-6

[6]
An open source knowledge graph ecosystem for the life sciences.

Sci Data. 2024-4-11

[7]
Multimodal learning with graphs.

Nat Mach Intell. 2023-4

[8]
Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA.

Nat Methods. 2024-1

[9]
Noncoding RNAs improve the predictive power of network medicine.

Proc Natl Acad Sci U S A. 2023-11-7

[10]
TT3D: Leveraging precomputed protein 3D sequence models to predict protein-protein interactions.

Bioinformatics. 2023-11-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索