Noël Thomas, Loukos Harilaos, Defrance Dimitri, Vrac Mathieu, Levavasseur Guillaume
The Climate Data Factory, Paris, France.
Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Université Paris-Saclay Centre d'Etudes de Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France.
Data Brief. 2021 Feb 21;35:106900. doi: 10.1016/j.dib.2021.106900. eCollection 2021 Apr.
A high-resolution climate projections dataset is obtained by statistically downscaling climate projections from the CMIP5 experiment using the ERA5 reanalysis from the Copernicus Climate Change Service. This global dataset has a spatial resolution of 0.25°x 0.25°, comprises 21 climate models and includes 5 surface daily variables at monthly resolution: air temperature (mean, minimum, and maximum), precipitation, and mean near-surface wind speed. Two greenhouse gas emissions scenarios are available: one with mitigation policy (RCP4.5) and one without mitigation (RCP8.5). The downscaling method is a Quantile Mapping method (QM) called the Cumulative Distribution Function transform (CDF-t) method that was first used for wind values and is now referenced in dozens of peer-reviewed publications. The data processing includes quality control of metadata according to the climate modeling community standards and value checking for outlier detection.
通过使用哥白尼气候变化服务中心的ERA5再分析数据,对CMIP5实验的气候预测进行统计降尺度处理,获得了一个高分辨率气候预测数据集。这个全球数据集的空间分辨率为0.25°x 0.25°,包含21个气候模型,并包括月分辨率的5个地面日变量:气温(平均、最低和最高)、降水量和近地面平均风速。有两种温室气体排放情景可供选择:一种是有缓解政策的情景(RCP4.5),另一种是没有缓解措施的情景(RCP8.5)。降尺度方法是一种分位数映射方法(QM),称为累积分布函数变换(CDF-t)方法,该方法最初用于风速值,现在已在数十篇同行评审的出版物中被引用。数据处理包括根据气候建模社区标准对元数据进行质量控制,以及进行值检查以检测异常值。