Suppr超能文献

用于创伤复苏的基于视频的并发活动识别

Video-based Concurrent Activity Recognition for Trauma Resuscitation.

作者信息

Zhang Yanyi, Gu Yue, Marsic Ivan, Zheng Yinan, Burd Randall S

机构信息

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA.

Division of Trauma and Burn Surgery, Children's National Medical Center, Washington, DC, USA.

出版信息

Proc (IEEE Int Conf Healthc Inform). 2020 Nov-Dec;2020. doi: 10.1109/ichi48887.2020.9374399. Epub 2021 Mar 12.

Abstract

We introduce a video-based system for concurrent activity recognition during teamwork in a clinical setting. During system development, we preserved patient and provider privacy by pre-computing spatio-temporal features. We extended the inflated 3D ConvNet (i3D) model for concurrent activity recognition. For the model training, we tuned the weights of the final stages of i3D using back-propagated loss from the fully-connected layer. We applied filtering on the model predictions to remove noisy predictions. We evaluated the system on five activities performed during trauma resuscitation, the initial management of injured patients in the emergency department. Our system achieved an average value of 74% average precision (AP) for these five activities and outperformed previous systems designed for the same domain. We visualized feature maps from the model, showing that the system learned to focus on regions relevant to performance of each activity.

摘要

我们介绍了一种基于视频的系统,用于在临床环境中的团队协作期间进行并发活动识别。在系统开发过程中,我们通过预计算时空特征来保护患者和医护人员的隐私。我们扩展了用于并发活动识别的膨胀3D卷积神经网络(i3D)模型。对于模型训练,我们使用来自全连接层的反向传播损失来调整i3D最后阶段的权重。我们对模型预测应用了滤波以去除噪声预测。我们在创伤复苏(急诊科对受伤患者的初始处理)期间执行的五项活动上对该系统进行了评估。我们的系统在这五项活动上实现了平均精度(AP)为74%的平均值,并且优于为同一领域设计的先前系统。我们可视化了模型的特征图,表明该系统学会了专注于与每项活动执行相关的区域。

相似文献

1
Video-based Concurrent Activity Recognition for Trauma Resuscitation.用于创伤复苏的基于视频的并发活动识别
Proc (IEEE Int Conf Healthc Inform). 2020 Nov-Dec;2020. doi: 10.1109/ichi48887.2020.9374399. Epub 2021 Mar 12.
9
Multiview Layer Fusion Model for Action Recognition Using RGBD Images.基于 RGBD 图像的动作识别的多视图层融合模型。
Comput Intell Neurosci. 2018 Jun 20;2018:9032945. doi: 10.1155/2018/9032945. eCollection 2018.
10
Teamwork training improves the clinical care of trauma patients.团队合作培训提高创伤患者的临床护理水平。
J Surg Educ. 2010 Nov-Dec;67(6):439-43. doi: 10.1016/j.jsurg.2010.06.006. Epub 2010 Nov 5.

引用本文的文献

本文引用的文献

2
Deep Learning for RFID-Based Activity Recognition.基于射频识别的活动识别的深度学习
Proc Int Conf Embed Netw Sens Syst. 2016 Nov;2016:164-175. doi: 10.1145/2994551.2994569.
4
EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos.EndoNet:腹腔镜视频识别任务的深度架构。
IEEE Trans Med Imaging. 2017 Jan;36(1):86-97. doi: 10.1109/TMI.2016.2593957. Epub 2016 Jul 22.
5
Sensor-based surgical activity recognition in unconstrained environments.无约束环境下基于传感器的手术活动识别
Minim Invasive Ther Allied Technol. 2014 Aug;23(4):198-205. doi: 10.3109/13645706.2013.878363. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验