Suppr超能文献

聚焦关键因素:通过行为者跟踪实现创伤复苏的细粒度医疗活动识别

Focusing on What Matters: Fine-grained Medical Activity Recognition for Trauma Resuscitation via Actor Tracking.

作者信息

Zhang Wenjin, Li Keyi, Yang Sen, Yuan Sifan, Marsic Ivan, Sippel Genevieve J, Kim Mary S, Burd Randall S

机构信息

Rutgers University.

Waymo.

出版信息

Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:4950-4958. doi: 10.1109/cvprw63382.2024.00500. Epub 2024 Sep 27.

Abstract

Trauma is a leading cause of mortality worldwide, with about 20% of these deaths being preventable. Most of these preventable deaths result from errors during the initial resuscitation of injured patients. Decision support has been evaluated as an approach to support teams during this phase to reduce errors. Existing systems require manual data entry and monitoring, which makes tasks challenging to accomplish in a time-critical setting. This paper identified the specific challenges of achieving effective decision support in trauma resuscitation based on computer vision techniques, including complex backgrounds, crowded scenes, fine-grained activities, and a scarcity of labeled data. To address the first three challenges, the proposed system involved an actor tracker that identifies individuals, allowing the system to focus on actor-specific features. Video Masked Autoencoder (Video-MAE) was used to overcome the issue of insufficient labeled data. This approach enables self-supervised learning using unlabeled video content, improving feature representation for medical activities. For more reliable performance, an ensemble fusion method was introduced. This technique combines predictions from consecutive video clips and different actors. Our method outperformed existing approaches in identifying fine-grained activities, providing a solution for activity recognition in trauma resuscitation and similar complex domains.

摘要

创伤是全球范围内主要的死亡原因,其中约20%的死亡是可预防的。这些可预防的死亡大多是由于受伤患者初始复苏过程中的失误导致的。决策支持已被评估为在这一阶段支持团队以减少失误的一种方法。现有系统需要手动输入和监测数据,这使得在时间紧迫的情况下完成任务具有挑战性。本文确定了基于计算机视觉技术在创伤复苏中实现有效决策支持的具体挑战,包括复杂背景、拥挤场景、细粒度活动以及标记数据稀缺等问题。为应对前三个挑战,所提出的系统包含一个能够识别个体的行为跟踪器(actor tracker),使系统能够专注于特定个体的特征。视频掩码自动编码器(Video-MAE)被用于克服标记数据不足的问题。这种方法能够利用未标记的视频内容进行自监督学习,改善对医疗活动的特征表示。为了获得更可靠的性能,引入了一种集成融合方法。该技术结合了连续视频片段和不同个体的预测结果。我们的方法在识别细粒度活动方面优于现有方法,为创伤复苏及类似复杂领域的活动识别提供了解决方案。

相似文献

本文引用的文献

1
Video Transformers: A Survey.视频Transformer综述
IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):12922-12943. doi: 10.1109/TPAMI.2023.3243465. Epub 2023 Oct 3.
3
Video-based Concurrent Activity Recognition for Trauma Resuscitation.用于创伤复苏的基于视频的并发活动识别
Proc (IEEE Int Conf Healthc Inform). 2020 Nov-Dec;2020. doi: 10.1109/ichi48887.2020.9374399. Epub 2021 Mar 12.
5
Deep Learning for RFID-Based Activity Recognition.基于射频识别的活动识别的深度学习
Proc Int Conf Embed Netw Sens Syst. 2016 Nov;2016:164-175. doi: 10.1145/2994551.2994569.
7
Mask R-CNN.Mask R-CNN。
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397. doi: 10.1109/TPAMI.2018.2844175. Epub 2018 Jun 5.
9
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description.长期递归卷积网络的视觉识别与描述。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):677-691. doi: 10.1109/TPAMI.2016.2599174. Epub 2016 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验