Macromolecular Crystallography, Helmholtz-Zentrum Berlin.
Macromolecular Crystallography, Helmholtz-Zentrum Berlin; Structural Biochemistry Group, Institute for Chemistry and Biochemistry, Freie Universität Berlin.
J Vis Exp. 2021 Mar 3(169). doi: 10.3791/62208.
Fragment screening is a technique that helps to identify promising starting points for ligand design. Given that crystals of the target protein are available and display reproducibly high-resolution X-ray diffraction properties, crystallography is among the most preferred methods for fragment screening because of its sensitivity. Additionally, it is the only method providing detailed 3D information of the binding mode of the fragment, which is vital for subsequent rational compound evolution. The routine use of the method depends on the availability of suitable fragment libraries, dedicated means to handle large numbers of samples, state-of-the-art synchrotron beamlines for fast diffraction measurements and largely automated solutions for the analysis of the results. Here, the complete practical workflow and the included tools on how to conduct crystallographic fragment screening (CFS) at the Helmholtz-Zentrum Berlin (HZB) are presented. Preceding this workflow, crystal soaking conditions as well as data collection strategies are optimized for reproducible crystallographic experiments. Then, typically in a one to two-day procedure, a 96-membered CFS-focused library provided as dried ready-to-use plates is employed to soak 192 crystals, which are then flash-cooled individually. The final diffraction experiments can be performed within one day at the robot-mounting supported beamlines BL14.1 and BL14.2 at the BESSY II electron storage ring operated by the HZB in Berlin-Adlershof (Germany). Processing of the crystallographic data, refinement of the protein structures, and hit identification is fast and largely automated using specialized software pipelines on dedicated servers, requiring little user input. Using the CFS workflow at the HZB enables routine screening experiments. It increases the chances for successful identification of fragment hits as starting points to develop more potent binders, useful for pharmacological or biochemical applications.
片段筛选是一种有助于确定配体设计有前途起点的技术。鉴于目标蛋白质的晶体可用并且显示出可重现的高分辨率 X 射线衍射性质,晶体学是片段筛选中最受欢迎的方法之一,因为其灵敏度高。此外,它是唯一提供片段结合模式详细 3D 信息的方法,这对于随后的合理化合物进化至关重要。该方法的常规使用取决于合适的片段文库的可用性、处理大量样品的专用手段、用于快速衍射测量的最先进的同步加速器光束线以及用于分析结果的高度自动化解决方案。在这里,介绍了如何在柏林亥姆霍兹中心(HZB)进行晶体学片段筛选(CFS)的完整实用工作流程和包含的工具。在该工作流程之前,优化了晶体浸泡条件和数据收集策略,以实现可重复的晶体学实验。然后,通常在一到两天的过程中,使用冻干即用板形式提供的 96 个成员的 CFS 聚焦库来浸泡 192 个晶体,然后单独进行快速冷却。最终的衍射实验可以在 HZB 在柏林-Adlershof(德国)运营的 BESSY II 电子储存环上的机器人安装支持光束线 BL14.1 和 BL14.2 上在一天内完成。使用专门的服务器上的专用软件管道进行晶体学数据处理、蛋白质结构精修和命中识别非常快速且自动化程度高,只需很少的用户输入。在 HZB 使用 CFS 工作流程可以进行常规筛选实验。它增加了成功识别片段命中作为开发更有效结合物的起点的机会,这些结合物可用于药理学或生化应用。