Sarkar Sujit
Department of Theoretical Sciences, Poornaprajna Institute of Scientific Research, 4, Sadashivanagar, Bangalore, 560 080 , India.
Poornaprajna Institute of Scientific Research, Bidalur Post, Devanhalli, Bangalore Rural, Bangalore, 562110, India.
Sci Rep. 2021 Mar 9;11(1):5510. doi: 10.1038/s41598-021-84485-2.
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism governs the critical behavior of a wide range of many-body systems. We show here that this phenomenon is not restricted to conventional many body system but also for the strongly correlated parity-time (PT) symmetry quantum criticality. We show explicitly behaviour of topological excitation for the real and imaginary part of the potential are different through the analysis of second order and third order renormalization group (RG). One of the most interesting feature that we observe from our study the presence of hidden QBKT and also conventional QBKT for the real part of the potential whereas there is no such evidence for the imaginary part of the potential. We also present the exact solution for the RG flow lines. We show explicitly how the physics of single field double frequencies sine-Gordon Hamiltonian effectively transform to the dual field double frequencies sine-Gordon Hamiltonian for a certain regime of parameter space. This is the first example in any quantum many body systems. We present the results of second order and third order RG flow results explicitly for the real and imaginary part of the potential. This PT symmetric system can be experimentally tested in ultra-cold atoms. This work provides a new perspective for the PT symmetric quantum criticality.
贝雷津斯基-科斯特利茨-索利斯(BKT)机制支配着广泛的多体系统的临界行为。我们在此表明,这种现象不仅限于传统的多体系统,也适用于强关联的宇称-时间(PT)对称量子临界性。通过二阶和三阶重整化群(RG)分析,我们明确展示了势的实部和虚部的拓扑激发行为是不同的。我们从研究中观察到的最有趣的特征之一是,对于势的实部存在隐藏的量子BKT以及传统的量子BKT,而对于势的虚部则没有这样的证据。我们还给出了RG流线的精确解。我们明确展示了在参数空间的特定区域中,单场双频正弦-戈登哈密顿量的物理如何有效地转变为对偶场双频正弦-戈登哈密顿量。这是任何量子多体系统中的第一个例子。我们明确给出了势的实部和虚部的二阶和三阶RG流结果。这个PT对称系统可以在超冷原子中进行实验测试。这项工作为PT对称量子临界性提供了一个新的视角。