James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
Department of Physics, University of Chicago, Chicago, Illinois 60637, USA.
Nat Commun. 2017 Jan 10;8:13881. doi: 10.1038/ncomms13881.
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.
非平衡驱动的生物物理过程被认为能够使其在存在热波动和其他无序源的情况下稳健运行。这种稳健的功能包括感觉适应、增强的酶特异性和相干振荡的维持。阐明能量消耗与组织之间的关系仍然是非平衡统计力学中的一个重要和未解决的问题。在这里,我们报告称,具有非平衡通量的系统的稳态可以支持拓扑保护的边界模式,这些模式类似于电子和机械系统中的类似模式。与它们的电子和机械对应物类似,非平衡系统中的拓扑保护边界稳态是稳健的,并且对局部扰动的敏感性很小。我们认为,我们的工作为生物物理系统如何利用非平衡驱动来实现稳健功能提供了一个框架。