Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
Nucleic Acids Res. 2021 Apr 19;49(7):3907-3918. doi: 10.1093/nar/gkab152.
Somatic expansion of the CAG repeat tract that causes Huntington's disease (HD) is thought to contribute to the rate of disease pathogenesis. Therefore, factors influencing repeat expansion are potential therapeutic targets. Genes in the DNA mismatch repair pathway are critical drivers of somatic expansion in HD mouse models. Here, we have tested, using genetic and pharmacological approaches, the role of the endonuclease domain of the mismatch repair protein MLH3 in somatic CAG expansion in HD mice and patient cells. A point mutation in the MLH3 endonuclease domain completely eliminated CAG expansion in the brain and peripheral tissues of a HD knock-in mouse model (HttQ111). To test whether the MLH3 endonuclease could be manipulated pharmacologically, we delivered splice switching oligonucleotides in mice to redirect Mlh3 splicing to exclude the endonuclease domain. Splice redirection to an isoform lacking the endonuclease domain was associated with reduced CAG expansion. Finally, CAG expansion in HD patient-derived primary fibroblasts was also significantly reduced by redirecting MLH3 splicing to the endogenous endonuclease domain-lacking isoform. These data indicate the potential of targeting the MLH3 endonuclease domain to slow somatic CAG repeat expansion in HD, a therapeutic strategy that may be applicable across multiple repeat expansion disorders.
导致亨廷顿病(HD)的 CAG 重复序列的体突变被认为是导致疾病发病机制的原因之一。因此,影响重复扩展的因素是潜在的治疗靶点。DNA 错配修复途径中的基因是 HD 小鼠模型中体突变的关键驱动因素。在这里,我们使用遗传和药理学方法测试了错配修复蛋白 MLH3 的内切酶结构域在 HD 小鼠和患者细胞中体 CAG 扩展中的作用。MLH3 内切酶结构域中的点突变完全消除了 HD 基因敲入小鼠模型(HttQ111)大脑和外周组织中的 CAG 扩展。为了测试 MLH3 内切酶是否可以通过药理学进行操纵,我们在小鼠中递送剪接转换寡核苷酸,以使 Mlh3 剪接重新定向以排除内切酶结构域。与缺乏内切酶结构域的异构体的剪接重新定向与 CAG 扩展减少相关。最后,通过将 MLH3 剪接重新导向内源性缺乏内切酶结构域的异构体,也显著减少了 HD 患者来源的原代成纤维细胞中的 CAG 扩展。这些数据表明,靶向 MLH3 内切酶结构域以减缓 HD 中的体 CAG 重复扩展具有潜力,这一治疗策略可能适用于多种重复扩展疾病。