Suppr超能文献

最优多药物疗法治疗肿瘤隔室模型:存在耐药性时细胞周期特异性动力学。

Optimum multi-drug regime for compartment model of tumour: cell-cycle-specific dynamics in the presence of resistance.

机构信息

Netaji Subhas Institute of Technology, University of Delhi, Delhi, India.

School of Automation, Banasthali Vidyapith, Tonk, Rajasthan, India.

出版信息

J Pharmacokinet Pharmacodyn. 2021 Aug;48(4):543-562. doi: 10.1007/s10928-021-09749-w. Epub 2021 Mar 22.

Abstract

This work is focused on multi-objective optimisation of a multi-drug chemotherapy schedule for cell-cycle-specific cancer treatment under the influence of drug resistance. The acquired drug resistance to chemotherapeutic agents is incorporated into the existing compartmental model of breast cancer. Furthermore, the toxic effect of drugs on healthy cells and overall drug concentration in the patient body are also constrained in the proposed model. The objective is to determine the optimal drug schedule according to the patient's physiological condition so that the tumour burden is minimised. A multi-objective optimisation algorithm, non-dominated sorting genetic algorithm-II (NSGA-II) is utilised to solve the problem. The obtained results are thoroughly analysed to illustrate the impact of drug resistance on the treatment. The capability of optimised schedules to deal with parametric uncertainty is also analysed. The drug schedules obtained in this work align well with the clinical standards. It is also revealed that the NSGA-II optimised drug schedule with proper rest period between successive dosages yields the minimum cancer load at the end of the treatment.

摘要

这项工作专注于在药物耐药性影响下,针对细胞周期特异性癌症治疗的多药物化疗方案进行多目标优化。已获得的对化疗药物的耐药性被纳入现有的乳腺癌区室模型中。此外,药物对健康细胞的毒性作用和患者体内的整体药物浓度也在提出的模型中受到限制。目标是根据患者的生理状况确定最佳药物方案,使肿瘤负担最小化。利用多目标优化算法,非支配排序遗传算法-II(NSGA-II)来解决这个问题。对所得到的结果进行了深入分析,以说明耐药性对治疗的影响。还分析了优化方案应对参数不确定性的能力。本工作中获得的药物方案与临床标准相符。结果还表明,在连续剂量之间有适当的休息期的 NSGA-II 优化药物方案在治疗结束时可产生最小的癌症负荷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验