Suppr超能文献

人工智能提高膀胱癌检测中的细胞学表现:VisioCyt检测结果

Artificial intelligence to improve cytology performances in bladder carcinoma detection: results of the VisioCyt test.

作者信息

Lebret Thierry, Pignot Geraldine, Colombel Marc, Guy Laurent, Rebillard Xavier, Savareux Laurent, Roumigue Mathieu, Nivet Sebastien, Coutade Saidi Monique, Piaton Eric, Radulescu Camelia

机构信息

Urology Department, Foch Hospital, Suresnes, France.

UVSQ, Paris Saclay University, Versailles, France.

出版信息

BJU Int. 2022 Mar;129(3):356-363. doi: 10.1111/bju.15382. Epub 2021 Apr 26.

Abstract

OBJECTIVE

To explore the utility of artificial intelligence (AI) using the VisioCyt® test (VitaDX International, Rennes, France) to improve diagnosis of bladder carcinoma using voided urine cytology.

PATIENTS AND METHODS

A national prospective multicentre trial (14 centres) was conducted on 1360 patients, divided in two groups. The first group included bladder carcinoma diagnosis with different histological grades and stages, and the second group included control patients based on negative cystoscopy and cytology results. The first step of this VISIOCYT1 trial focussed on algorithm development and the second step on validating this algorithm. A total of 598 patients were included in this first step, 449 patients with bladder tumours (219 high-grade and 230 low-grade) and 149 as negative controls. The VisioCyt test was compared to voided urine cytology performed by experienced uro-pathologists from each centre.

RESULTS

Overall sensitivity was highly improved by the VisioCyt test compared to cytology (84.9% vs 43%). For high-grade tumours the VisioCyt test sensitivity was 92.6% vs 61.1% for the uro-pathologists. Regarding low-grade tumours, VisioCyt test sensitivity was 77% vs 26.3% for the uro-pathologists.

CONCLUSION

In comparison to routine cytology, the results of the first phase of the VISIOCYT1 trial show very clear progress in terms of sensitivity, which is particularly visible and interesting for low-grade tumours. If the validation cohort confirms these results, it could lead to the VisioCyt test being considered as a very useful aid for pathologists. Moreover, as this test is in fact software based on AI, it should become more and more efficient as more data are collected.

摘要

目的

探讨使用VisioCyt®检测(法国雷恩市VitaDX国际公司)的人工智能(AI)在利用晨尿细胞学检查改善膀胱癌诊断方面的效用。

患者与方法

在全国范围内进行了一项前瞻性多中心试验(14个中心),涉及1360名患者,分为两组。第一组包括不同组织学分级和分期的膀胱癌诊断病例,第二组包括基于膀胱镜检查和细胞学结果为阴性的对照患者。VISIOCYT1试验的第一步着重于算法开发,第二步则是验证该算法。第一步共纳入598名患者,其中449例为膀胱肿瘤患者(219例高级别和230例低级别),149例为阴性对照。将VisioCyt检测与各中心经验丰富的泌尿病理学家进行的晨尿细胞学检查进行比较。

结果

与细胞学检查相比,VisioCyt检测的总体敏感性有了显著提高(84.9%对43%)。对于高级别肿瘤,VisioCyt检测的敏感性为92.6%,而泌尿病理学家的敏感性为61.1%。对于低级别肿瘤,VisioCyt检测的敏感性为77%,而泌尿病理学家的敏感性为26.3%。

结论

与常规细胞学检查相比,VISIOCYT1试验第一阶段的结果在敏感性方面显示出非常明显的进展,这在低级别肿瘤中尤为明显且令人关注。如果验证队列证实了这些结果,可能会使VisioCyt检测被视为对病理学家非常有用的辅助手段。此外,由于该检测实际上是基于AI的软件,随着收集到更多数据,它应该会变得越来越高效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验