Suppr超能文献

人工智能会取代细胞病理学家吗:关于人工智能在尿液细胞学中的当前应用及证据的范围综述

Will artificial intelligence (AI) replace cytopathologists: a scoping review of current applications and evidence of A.I. in urine cytology.

作者信息

Li Jingqiu, Chong Tsung Wen, Fong Khi Yung, Han Benjamin Lim Jia, Tan Si Ying, Mui Joanne Tan San, Khor Li Yan, Somoni Bhaskar Kumar, Herrmann Thomas R W, Gauhar Vineet, Li Valerie Gan Huei, Sam Christopher Cheng Wai, Lim Ee Jean

机构信息

Department of Urology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.

Ministry of Health Holdings, Singapore, Singapore.

出版信息

World J Urol. 2025 Apr 1;43(1):200. doi: 10.1007/s00345-025-05583-8.

Abstract

PURPOSE

Urine cytology, while valuable in facilitating the detection and surveillance of bladder cancer, has notable limitations. The application of artificial intelligence (AI) in urine cytology holds significant promise for improving diagnostic accuracy and efficiency. Our scoping review aims to assess the current evidence of AI's utility in urine cytology.

METHOD

An electronic literature research on the application of AI in the setting of urine cytology was conducted on PubMed, EMBASE, and Scopus from inception to 1st November 2024. Case reports, abstracts, and reviews were excluded from this analysis. Our search strategy retrieved 1356 articles; after excluding 142 duplicates, the remaining 1214 papers were screened by title and abstract. 31 studies entered full-article review, and a total of 16 articles were included in the final analysis.

RESULTS

The main application of AI in urine cytology diagnosis is to automate the identification and characterization of abnormal cells. It has also been utilized for risk stratification of abnormal cells, predicting histologic results from urine cytology samples, and predicting bladder cancer recurrence. Current limitation includes the need for robust training datasets and validation studies to ensure the generalizability of AI algorithms.

CONCLUSION

In summary, AI in urine cytology, though still developing, shows significant promise in enhancing diagnostic accuracy and efficiency. Current evidence suggests that AI, as a valuable tool, could revolutionize urinary tract cancer diagnosis and management.

摘要

目的

尿细胞学检查在促进膀胱癌的检测和监测方面具有重要价值,但也存在显著局限性。人工智能(AI)在尿细胞学检查中的应用有望显著提高诊断准确性和效率。我们的范围综述旨在评估AI在尿细胞学检查中应用的现有证据。

方法

在PubMed、EMBASE和Scopus数据库上进行了一项关于AI在尿细胞学检查中应用的电子文献研究,检索时间从数据库建立至2024年11月1日。本分析排除了病例报告、摘要和综述。我们的检索策略共检索到1356篇文章;排除142篇重复文章后,其余1214篇文章通过标题和摘要进行筛选。31项研究进入全文审查,最终分析共纳入16篇文章。

结果

AI在尿细胞学诊断中的主要应用是实现异常细胞识别和特征描述的自动化。它还被用于异常细胞的风险分层、根据尿细胞学样本预测组织学结果以及预测膀胱癌复发。当前的局限性包括需要强大的训练数据集和验证研究,以确保AI算法的通用性。

结论

总之,尿细胞学检查中的AI虽然仍在发展,但在提高诊断准确性和效率方面显示出巨大潜力。现有证据表明,AI作为一种有价值的工具,可能会彻底改变尿路癌的诊断和管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验