Xu Shun, Hu Ruijin, Wang Junzhuan, Li Zheyang, Xu Jun, Chen Kunji, Yu Linwei
National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China.
Micro-Fabrication and Integration Technology Center, Nanjing University, 210093 Nanjing, People's Republic of China.
Nanotechnology. 2021 Apr 9;32(26). doi: 10.1088/1361-6528/abf0c9.
Ultrathin silicon nanowires (SiNWs) are ideal 1D channels to construct high performance nanoelectronics and sensors. We here report on a high-density catalytic growth of orderly ultrathin SiNWs, with diameter down toDnw=27±2nmand narrow NW-to-NW spacing of onlySnw ∼80 nm, without the use of high-resolution lithography. This has been accomplished via a terrace-confined strategy, where tiny indium (In) droplets move on sidewall terraces to absorb precoated amorphous Si layer as precursor and produce self-aligned SiNW array. It is found that, under proper parameter control, a tighter terrace-step confinement can help to scale the dimensions of the SiNW array down to the extremes that have not been reported before, while maintaining still a stable guiding growth over complex contours. Prototype SiNW field effect transistors demonstrate a high/current ratio ∼10, low leakage current of ∼0.3 pA and steep subthreshold swing of 220 mV dec. These results highlight the unexplored potential of catalytic growth in advanced nanostructure fabrication that is highly relevant for scalable SiNW logic and sensor applications.
超薄硅纳米线(SiNWs)是构建高性能纳米电子器件和传感器的理想一维通道。我们在此报告了有序超薄SiNWs的高密度催化生长,其直径低至Dnw = 27±2nm,且纳米线与纳米线之间的间距仅为Snw ∼80nm,无需使用高分辨率光刻技术。这是通过一种台面限制策略实现的,即微小的铟(In)液滴在侧壁台面上移动,以吸收预涂覆的非晶硅层作为前驱体,并产生自对准的SiNW阵列。研究发现,在适当的参数控制下,更紧密的台面-台阶限制有助于将SiNW阵列的尺寸缩小到前所未有的极限,同时在复杂轮廓上仍保持稳定的导向生长。原型SiNW场效应晶体管表现出高/电流比 ∼10、低泄漏电流 ∼0.3 pA以及220 mV/dec的陡峭亚阈值摆幅。这些结果突出了催化生长在先进纳米结构制造中尚未被探索的潜力,这与可扩展的SiNW逻辑和传感器应用高度相关。