自噬蛋白 ATG5 的缺失通过减少线粒体丰度和破坏 Ca2+ 循环,损害了小鼠和人类的心脏功能。

Loss of autophagy protein ATG5 impairs cardiac capacity in mice and humans through diminishing mitochondrial abundance and disrupting Ca2+ cycling.

机构信息

Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.

BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.

出版信息

Cardiovasc Res. 2022 May 6;118(6):1492-1505. doi: 10.1093/cvr/cvab112.

Abstract

AIMS

Autophagy protects against the development of cardiac hypertrophy and failure. While aberrant Ca2+ handling promotes myocardial remodelling and contributes to contractile dysfunction, the role of autophagy in maintaining Ca2+ homeostasis remains elusive. Here, we examined whether Atg5 deficiency-mediated autophagy promotes early changes in subcellular Ca2+ handling in ventricular cardiomyocytes, and whether those alterations associate with compromised cardiac reserve capacity, which commonly precedes the onset of heart failure.

METHODS AND RESULTS

RT-qPCR and immunoblotting demonstrated reduced Atg5 gene and protein expression and decreased abundancy of autophagy markers in hypertrophied and failing human hearts. The function of ATG5 was examined using cardiomyocyte-specific Atg5-knockout mice (Atg5-/-). Before manifesting cardiac dysfunction, Atg5-/- mice showed compromised cardiac reserve in response to β-adrenergic stimulation. Consequently, effort intolerance and maximal oxygen consumption were reduced during treadmill-based exercise tolerance testing. Mechanistically, cellular imaging revealed that Atg5 deprivation did not alter spatial and functional organization of intracellular Ca2+ stores or affect Ca2+ cycling in response to slow pacing or upon acute isoprenaline administration. However, high-frequency stimulation exposed stunted amplitude of Ca2+ transients, augmented nucleoplasmic Ca2+ load, and increased CaMKII activity, especially in the nuclear region of hypertrophied Atg5-/- cardiomyocytes. These changes in Ca2+ cycling were recapitulated in hypertrophied human cardiomyocytes. Finally, ultrastructural analysis revealed accumulation of mitochondria with reduced volume and size distribution, meanwhile functional measurements showed impaired redox balance in Atg5-/- cardiomyocytes, implying energetic unsustainability due to overcompensation of single mitochondria, particularly under increased workload.

CONCLUSION

Loss of cardiac Atg5-dependent autophagy reduces mitochondrial abundance and causes subtle alterations in subcellular Ca2+ cycling upon increased workload in mice. Autophagy-related impairment of Ca2+ handling is progressively worsened by β-adrenergic signalling in ventricular cardiomyocytes, thereby leading to energetic exhaustion and compromised cardiac reserve.

摘要

目的

自噬可防止心肌肥大和衰竭的发生。虽然异常的 Ca2+ 处理会促进心肌重构并导致收缩功能障碍,但自噬在维持 Ca2+ 动态平衡中的作用仍不清楚。在这里,我们研究了 Atg5 缺陷介导的自噬是否会促进心室肌细胞亚细胞 Ca2+ 处理的早期变化,以及这些变化是否与心脏储备能力受损有关,后者通常先于心衰的发生。

方法和结果

实时定量 PCR 和免疫印迹显示,肥大和衰竭的人心肌中 Atg5 基因和蛋白表达减少,自噬标志物的丰度降低。使用心肌细胞特异性 Atg5 敲除小鼠(Atg5-/-)研究 ATG5 的功能。在表现出心脏功能障碍之前,Atg5-/- 小鼠在β-肾上腺素刺激下表现出心脏储备能力受损。因此,在跑步机耐力测试中,努力不耐受和最大耗氧量减少。从机制上讲,细胞成像显示,Atg5 缺乏不会改变细胞内 Ca2+ 储存的空间和功能组织,也不会影响缓慢起搏或急性异丙肾上腺素给药时的 Ca2+ 循环。然而,高频刺激暴露了 Ca2+ 瞬变幅度的缩短,核质 Ca2+ 负荷增加,CaMKII 活性增加,尤其是在肥大的 Atg5-/- 心肌细胞的核区。这些 Ca2+ 循环的变化在肥大的人类心肌细胞中得到重现。最后,超微结构分析显示线粒体堆积,体积和大小分布减少,同时功能测量显示 Atg5-/- 心肌细胞的氧化还原平衡受损,表明由于单个线粒体的过度补偿,能量供应不可持续,特别是在增加工作量时。

结论

心脏中依赖 Atg5 的自噬丧失会减少线粒体的丰度,并在小鼠增加工作量时导致亚细胞 Ca2+ 循环出现细微变化。β-肾上腺素信号在心室肌细胞中逐渐加重与自噬相关的 Ca2+ 处理受损,从而导致能量衰竭和心脏储备能力受损。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428b/9074988/6b44bde568fc/cvab112f8.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索