a Department of Anatomy , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil.
b The Cedars-Sinai Heart Institute and the Barbra Streisand Women's Heart Center , Cedars-Sinai Medical Center , Los Angeles , CA , USA.
Autophagy. 2017 Aug 3;13(8):1304-1317. doi: 10.1080/15548627.2017.1325062.
We previously reported that facilitating the clearance of damaged mitochondria through macroautophagy/autophagy protects against acute myocardial infarction. Here we characterize the impact of exercise, a safe strategy against cardiovascular disease, on cardiac autophagy and its contribution to mitochondrial quality control, bioenergetics and oxidative damage in a post-myocardial infarction-induced heart failure animal model. We found that failing hearts displayed reduced autophagic flux depicted by accumulation of autophagy-related markers and loss of responsiveness to chloroquine treatment at 4 and 12 wk after myocardial infarction. These changes were accompanied by accumulation of fragmented mitochondria with reduced O consumption, elevated HO release and increased Ca-induced mitochondrial permeability transition pore opening. Of interest, disruption of autophagic flux was sufficient to decrease cardiac mitochondrial function in sham-treated animals and increase cardiomyocyte toxicity upon mitochondrial stress. Importantly, 8 wk of exercise training, starting 4 wk after myocardial infarction at a time when autophagy and mitochondrial oxidative capacity were already impaired, improved cardiac autophagic flux. These changes were followed by reduced mitochondrial number:size ratio, increased mitochondrial bioenergetics and better cardiac function. Moreover, exercise training increased cardiac mitochondrial number, size and oxidative capacity without affecting autophagic flux in sham-treated animals. Further supporting an autophagy mechanism for exercise-induced improvements of mitochondrial bioenergetics in heart failure, acute in vivo inhibition of autophagic flux was sufficient to mitigate the increased mitochondrial oxidative capacity triggered by exercise in failing hearts. Collectively, our findings uncover the potential contribution of exercise in restoring cardiac autophagy flux in heart failure, which is associated with better mitochondrial quality control, bioenergetics and cardiac function.
我们之前曾报道,通过巨自噬/自噬促进受损线粒体的清除可预防急性心肌梗死。在这里,我们描述了运动(一种预防心血管疾病的安全策略)对心脏自噬及其对心肌梗死后心力衰竭动物模型中线粒体质量控制、生物能量和氧化损伤的贡献的影响。我们发现,衰竭的心脏表现出自噬通量降低,其特征为自噬相关标志物的积累和对氯喹处理的反应性丧失,在心肌梗死后 4 和 12 周时。这些变化伴随着线粒体碎片化和耗氧量降低、HO 释放增加以及钙诱导的线粒体通透性转换孔开放增加。有趣的是,自噬通量的破坏足以降低假处理动物的心脏线粒体功能,并在线粒体应激时增加心肌细胞毒性。重要的是,从心肌梗死后 4 周开始,进行 8 周的运动训练可改善心脏自噬通量,此时自噬和线粒体氧化能力已经受损。这些变化伴随着线粒体数量:大小比例降低、线粒体生物能量增加和心脏功能改善。此外,运动训练增加了心脏线粒体的数量、大小和氧化能力,而在假处理动物中不影响自噬通量。进一步支持运动改善心力衰竭中线粒体生物能量的自噬机制,急性体内自噬通量抑制足以减轻心力衰竭中运动引起的线粒体氧化能力增加。总之,我们的发现揭示了运动在恢复心力衰竭中心脏自噬通量方面的潜力,这与更好的线粒体质量控制、生物能量和心脏功能有关。