Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
Biochim Biophys Acta Gen Subj. 2021 Jun;1865(6):129894. doi: 10.1016/j.bbagen.2021.129894. Epub 2021 Mar 20.
Parkin and phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) constitute a feed-forward signalling pathway that mediates autophagic removal of damaged mitochondria (mitophagy). With over 130 mutations identified to date in over 1000 patients with early onset parkinsonism, Parkin is considered a hot spot of signalling pathways involved in PD aetiology. Parkin is an E3 ligase and how its activity is regulated has been extensively studied: inter-domain interactions exert a tight inhibition on Parkin activity; binding to phospho-ubiquitin relieves this auto-inhibition; and phosphorylation of Parkin shifts the equilibrium towards maximal Parkin activation. This review focusses on recent, structural findings on the regulation of Parkin activity. What follows is a mechanistic introduction to the family of E3 ligases that includes Parkin, followed by a brief description of structural elements unique to Parkin that lock the enzyme in an autoinhibited state, contrasted with emerging models that have shed light on possible mechanisms of Parkin activation.
Parkin 和磷酸酶及张力蛋白同源物(PTEN)诱导的激酶 1(PINK1)构成了一个正反馈信号通路,介导受损线粒体(mitophagy)的自噬清除。迄今为止,在 1000 多名早发性帕金森病患者中已发现超过 130 种突变,Parkin 被认为是与 PD 发病机制相关的信号通路的热点。Parkin 是一种 E3 连接酶,其活性如何调节已得到广泛研究:结构域间相互作用对 Parkin 活性产生严格抑制;与磷酸化泛素结合可解除这种自动抑制;Parkin 的磷酸化使平衡向最大 Parkin 激活方向移动。本综述重点介绍了 Parkin 活性调节的最新结构发现。接下来是对包括 Parkin 在内的 E3 连接酶家族的机制介绍,然后简要描述了将酶锁定在自动抑制状态的 Parkin 特有的结构元件,与阐明 Parkin 激活可能机制的新兴模型形成对比。