Suppr超能文献

基于基因表达综合数据库构建决策树以分类膀胱癌及其亚型。

Construction of Decision Trees Based on Gene Expression Omnibus Data to Classify Bladder Cancer and Its Subtypes.

机构信息

Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China (mainland).

出版信息

Med Sci Monit. 2021 Mar 23;27:e929394. doi: 10.12659/MSM.929394.

Abstract

BACKGROUND Bladder cancer is a malignant tumor of the genitourinary system. Different subtypes of bladder cancer have different treatment methods and prognoses. Therefore, identifying hub genes affecting other genes is of great significance for the treatment of bladder cancer. MATERIAL AND METHODS We obtained expression profiles from the GSE13507 and GSE77952 datasets from the Gene Expression Omnibus database. First, principal component analysis was used to identify the difference in gene expression in different types of tissues. Differential expression analysis was used to find the differentially expressed genes between normal and tumor tissues, and between tumors with and without muscle infiltration. Further, based on differentially expressed genes, we constructed 2 decision trees for differentiating between tumor and normal tissues, and between muscle-infiltrating and non-muscle-infiltrating tumor tissues. A receiver operating characteristic curve was used to evaluate the prediction effect of the decision trees. RESULTS FAM107A and C8orf4 showed significantly lower expression in bladder cancer tissues than in normal tissues. Regarding muscle infiltration, CTHRC1 showed lower expression and HMGCS2 showed higher expression in non-muscle-infiltrating samples than in those with muscle infiltration. We constructed 2 decision trees for differentiating between tumor and normal tissue, and between tissues with and without muscle infiltration. Both decision trees showed good prediction results. CONCLUSIONS These newly discovered hub genes will be helpful in understanding the occurrence and development of different subtypes of bladder cancer, and will provide new therapeutic targets and biomarkers for bladder cancer.

摘要

背景

膀胱癌是一种泌尿系统的恶性肿瘤。不同类型的膀胱癌有不同的治疗方法和预后。因此,鉴定影响其他基因的枢纽基因对于膀胱癌的治疗具有重要意义。

材料与方法

我们从基因表达综合数据库(GEO)中的 GSE13507 和 GSE77952 数据集获得了表达谱。首先,主成分分析用于识别不同类型组织中基因表达的差异。差异表达分析用于发现正常组织与肿瘤组织、有和无肌肉浸润的肿瘤组织之间的差异表达基因。进一步,基于差异表达基因,我们构建了 2 个决策树,用于区分肿瘤组织和正常组织,以及区分有和无肌肉浸润的肿瘤组织。使用受试者工作特征曲线评估决策树的预测效果。

结果

FAM107A 和 C8orf4 在膀胱癌组织中的表达明显低于正常组织。关于肌肉浸润,CTHRC1 在无肌肉浸润样本中的表达较低,HMGCS2 在无肌肉浸润样本中的表达较高。我们构建了 2 个决策树,用于区分肿瘤组织和正常组织,以及区分有和无肌肉浸润的肿瘤组织。这两个决策树都显示出了良好的预测结果。

结论

这些新发现的枢纽基因将有助于理解不同类型膀胱癌的发生和发展,并为膀胱癌提供新的治疗靶点和生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/678e/7999716/2ad88839cfdd/medscimonit-27-e929394-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验