Suppr超能文献

基于决策树的分类器用于利用TCGA miRNA表达数据进行肺癌诊断和亚型分类。

Decision tree-based classifiers for lung cancer diagnosis and subtyping using TCGA miRNA expression data.

作者信息

Sherafatian Masih, Arjmand Fateme

机构信息

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran.

Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran.

出版信息

Oncol Lett. 2019 Aug;18(2):2125-2131. doi: 10.3892/ol.2019.10462. Epub 2019 Jun 10.

Abstract

Lung cancer has the world's highest cancer- associated mortality rate, making biomarker discovery for this cancer a pressing issue. Machine learning approaches to identify molecular biomarkers are not as prevalent as screening of potential biomarkers by differential expression analysis. However, several differentially expressed miRNAs involved in cancer have been identified using this approach. The availability of The Cancer Genome Atlas (TCGA) allows the use of machine-learning methods for the molecular profiling of tumors. The present study employed empirical negative control microRNAs (miRs) in lung cancer to normalize lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) datasets from TCGA to model decision trees in order to classify lung cancer status and subtype. The two primary classification models consisted of four miRNAs for lung cancer diagnosis and subtyping. hsa-miR-183 and hsa-miR-135b were used to distinguish lung tumors from normal samples taken from tissues adjacent to the tumor site, and hsa-miR-944 and hsa-miR-205 to further classify the tumors into LUAD and LUSC major subtypes. Specific cancer status classification models were also presented for each subtype.

摘要

肺癌是全球癌症相关死亡率最高的癌症,因此发现这种癌症的生物标志物成为一个紧迫的问题。通过机器学习方法识别分子生物标志物并不像通过差异表达分析筛选潜在生物标志物那样普遍。然而,利用这种方法已经鉴定出了几种与癌症相关的差异表达微小RNA(miRNA)。癌症基因组图谱(TCGA)的可用性使得能够使用机器学习方法对肿瘤进行分子分析。本研究采用肺癌中的经验性阴性对照微小RNA(miR)对来自TCGA的肺腺癌(LUAD)和肺鳞状细胞癌(LUSC)数据集进行标准化,以构建决策树模型,从而对肺癌状态和亚型进行分类。这两个主要分类模型由用于肺癌诊断和亚型分类的四种微小RNA组成。hsa-miR-183和hsa-miR-135b用于区分肺肿瘤与取自肿瘤部位相邻组织的正常样本,而hsa-miR-944和hsa-miR-205则用于将肿瘤进一步分为LUAD和LUSC主要亚型。还针对每个亚型提出了特定的癌症状态分类模型。

相似文献

引用本文的文献

本文引用的文献

2
miR-205 as a biological marker in non-small cell lung cancer.miR-205作为非小细胞肺癌的生物标志物
Biomed Pharmacother. 2017 Jul;91:823-830. doi: 10.1016/j.biopha.2017.04.086. Epub 2017 May 23.
8
The emerging role of microRNAs in resistance to lung cancer treatments.微小 RNA 在肺癌治疗耐药中的新兴作用。
Cancer Treat Rev. 2015 Feb;41(2):160-9. doi: 10.1016/j.ctrv.2014.12.009. Epub 2014 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验