Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
Environ Microbiol. 2021 May;23(5):2550-2563. doi: 10.1111/1462-2920.15475. Epub 2021 Mar 26.
Novosphingobium sp. ES2-1 is an efficient 17β-estradiol (E2)-degrading bacterium, which can convert E2 to estrone (E1), then to 4-hydroxyestrone (4-OH-E1) for subsequent oxidative cracking. In this study, the molecular bases for this process were elucidated. Two novel monooxygenase systems EstP and EstO were shown to catalyse the oxygenation of E1 and 4-OH-E1, respectively. EstP was a three-component cytochrome P450 monooxygenase system consisting of EstP1 (P450 monooxygenase), EstP2 (ferredoxin) and EstP3 (ferredoxin reductase). Ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) analysis revealed that EstP catalysed the 4-hydroxylation of E1 to produce 4-OH-E1. The resultant 4-OH-E1 was further oxidized by a two-component monooxygenase system EstO consisting of EstO1 (flavin-dependent monooxygenases) and EstO2 (flavin reductase). UPLC-HRMS combined with H-nuclear magnetic resonance analysis demonstrated that EstO catalysed the breakage of C9-C10 to yield a ring B-cleavage product. In addition, the oxygenase component genes estP1 and estO1 exhibited contrary inductive behaviours when exposed to different steroids, suggesting that EstP1-mediated 4-hydroxylation was E2-specific, whereas EstO1-mediated monooxygenation might be involved in the degradation of testosterone, androstenedione, progesterone and pregnenolone. This also implied that the mechanisms of the catabolism of different steroids by the same microorganism might be partially interlinked.
新鞘氨醇单胞菌 ES2-1 是一种高效的 17β-雌二醇(E2)降解菌,它可以将 E2 转化为雌酮(E1),然后转化为 4-羟基雌酮(4-OH-E1),以便随后进行氧化裂解。在本研究中,阐明了这一过程的分子基础。结果表明,两种新型单加氧酶系统 EstP 和 EstO 分别催化 E1 和 4-OH-E1 的氧化。EstP 是一个由 EstP1(细胞色素 P450 单加氧酶)、EstP2(铁氧还蛋白)和 EstP3(铁氧还蛋白还原酶)组成的三组分细胞色素 P450 单加氧酶系统。超高效液相色谱-高分辨质谱(UPLC-HRMS)分析表明,EstP 催化 E1 的 4-羟化生成 4-OH-E1。所得的 4-OH-E1 进一步被由 EstO1(黄素依赖性单加氧酶)和 EstO2(黄素还原酶)组成的二组分单加氧酶系统 EstO 氧化。UPLC-HRMS 结合 H-核磁共振分析表明,EstO 催化 C9-C10 的断裂生成环 B 裂解产物。此外,当暴露于不同的甾体时,氧合酶组分基因 estP1 和 estO1 表现出相反的诱导行为,这表明 EstP1 介导的 4-羟化是 E2 特异性的,而 EstO1 介导的单加氧作用可能参与了睾酮、雄烯二酮、孕酮和孕烯醇酮的降解。这也暗示了同一微生物对不同甾体的分解代谢机制可能部分相互关联。