Suppr超能文献

通过钌氧化还原聚合物和氧化铟锡纳米粒子连接的类囊体膜进行太阳能转换。

Solar Energy Conversion through Thylakoid Membranes Wired by Osmium Redox Polymer and Indium Tin Oxide Nanoparticles.

机构信息

Department of Systems Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neudong-ro, Gwangjin-gu, Seoul, 05029, Korea.

Department of Chemistry, Jeonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk, 54896, Korea.

出版信息

ChemSusChem. 2021 May 20;14(10):2216-2225. doi: 10.1002/cssc.202100288. Epub 2021 Apr 22.

Abstract

For several decades, much attention has been paid to thylakoid membranes (TMs) as photocatalysts for converting solar light to electricity. Despite extensive research, current technology provides only limited photocurrents. Here, a novel method based on TM-composite material was developed for achieving high photocurrent. When a thin film composed of TMs, osmium redox polymer (Os-RP), and indium tin oxide nanoparticles (ITOnp) was formed on a porous graphite surface, appreciable photocurrent as high as 0.5 mA cm was achieved at 0.4 V vs. Ag/AgCl. Each component plays its own role in transferring electrons from TMs to the anode, resulting in sharp drop in photocurrent with missing any component. Optimization between these three components showed 1 : 0.5 : 30 (TM/Os-RP/ITOnp) was the best ratio. Action spectra confirmed that TMs was the origin of photocurrent. It was inferred from blocking experiments using 3-(3,4-dichlorophenyl)-1,1-dimethylurea as an inhibitor that about 41 % of photocurrent was transferred from Q in photosystem II to the electrode via Os-RP and ITOnp. Quantum efficiencies at 430 and 660 nm were 12.2 and 18.5 %, respectively. Turnover frequency for water oxidation depended upon the amount of the composite. A complete cell with Pt/C cathode produced P of 122 μW cm at 758 μA cm under one sun illumination, which is the highest power density to our knowledge. This study opened a possibility of using TMs as photocatalysts for solar energy conversion.

摘要

几十年来,人们一直关注类囊体膜(TMs)作为将太阳能转化为电能的光催化剂。尽管进行了广泛的研究,但目前的技术仅提供了有限的光电流。在这里,开发了一种基于 TM 复合材料的新方法来实现高光电流。当 TMs、钌氧化还原聚合物(Os-RP)和氧化铟锡纳米粒子(ITOnp)的薄膜在多孔石墨表面形成时,在 0.4 V 对 Ag/AgCl 时可获得高达 0.5 mA cm 的可观光电流。每个组件在将电子从 TMs 转移到阳极方面都发挥着自己的作用,结果是缺少任何组件都会导致光电流急剧下降。这三个组件之间的优化显示 TM/Os-RP/ITOnp 的最佳比例为 1:0.5:30。动作光谱证实 TMs 是光电流的起源。通过使用 3-(3,4-二氯苯基)-1,1-二甲基脲作为抑制剂的阻断实验推断,大约 41%的光电流通过 Os-RP 和 ITOnp 从 PSII 中的 Q 转移到电极。在 430 和 660nm 处的量子效率分别为 12.2%和 18.5%。水氧化的周转率取决于复合材料的数量。在一个太阳光照下,带有 Pt/C 阴极的完整电池在 758 μA cm 时产生 122 μW cm 的 P,这是我们所知的最高功率密度。这项研究为利用 TMs 作为太阳能转换的光催化剂开辟了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验