Suppr超能文献

原子力显微镜揭示了 IVc 型菌毛纳米机器的独特粘附特性。

AFM Unravels the Unique Adhesion Properties of the Type IVc Pilus Nanomachine.

机构信息

Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium.

出版信息

Nano Lett. 2021 Apr 14;21(7):3075-3082. doi: 10.1021/acs.nanolett.1c00215. Epub 2021 Mar 23.

Abstract

Bacterial pili are proteinaceous motorized nanomachines that play various functional roles including surface adherence, bacterial motion, and virulence. The surface-contact sensor type IVc (or Tad) pilus is widely distributed in both Gram-positive and Gram-negative bacteria. In , this nanofilament, though crucial for surface colonization, has never been thoroughly investigated at the molecular level. As assembles several surface appendages at specific stages of the cell cycle, we designed a fluorescence-based screen to selectively study single piliated cells and combined it with atomic force microscopy and genetic manipulation to quantify the nanoscale adhesion of the type IVc pilus to hydrophobic substrates. We demonstrate that this nanofilament exhibits high stickiness compared to the canonical type IVa/b pili, resulting mostly from multiple hydrophobic interactions along the fiber length, and that it features nanospring mechanical properties. Our findings may be helpful to better understand the structure-function relationship of bacterial pilus nanomachines.

摘要

细菌菌毛是蛋白驱动的纳米机器,在表面黏附、细菌运动和毒力等方面发挥着各种功能。表面接触传感器 IVc 型(或 Tad)菌毛广泛分布于革兰氏阳性菌和革兰氏阴性菌中。在 中,尽管这种纳米丝对于表面定殖至关重要,但它从未在分子水平上得到彻底研究。由于 在细胞周期的特定阶段组装几个表面附属物,我们设计了一种基于荧光的筛选方法来选择性地研究单个菌毛细胞,并将其与原子力显微镜和遗传操作相结合,以定量测量 IVc 型菌毛与疏水基底的纳米级黏附。我们证明,与典型的 IVa/b 菌毛相比,这种纳米丝表现出更高的粘性,这主要是由于纤维长度上的多个疏水相互作用,并且它具有纳米弹簧机械性能。我们的发现可能有助于更好地理解细菌菌毛纳米机器的结构-功能关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验