Suppr超能文献

开发用于 N-聚糖的 Martini 2.2 参数:以 HIV-1 Env 糖蛋白动力学为例。

Development of Martini 2.2 parameters for N-glycans: a case study of the HIV-1 Env glycoprotein dynamics.

机构信息

Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

Glycobiology. 2021 Aug 7;31(7):787-799. doi: 10.1093/glycob/cwab017.

Abstract

N-linked glycans are ubiquitous in nature and play key roles in biology. For example, glycosylation of pathogenic proteins is a common immune evasive mechanism, hampering the development of successful vaccines. Due to their chemical variability and complex dynamics, an accurate molecular understanding of glycans is still limited by the lack of effective resolution of current experimental approaches. Here, we have developed and implemented a reductive model based on the popular Martini 2.2 coarse-grained force field for the computational study of N-glycosylation. We used the HIV-1 Env as a direct applied example of a highly glycosylated protein. Our results indicate that the model not only reproduces many observables in very good agreement with a fully atomistic force field but also can be extended to study large amount of glycosylation variants, a fundamental property that can aid in the development of drugs and vaccines.

摘要

N-连接的聚糖在自然界中普遍存在,在生物学中发挥着关键作用。例如,致病性蛋白的糖基化是一种常见的免疫逃避机制,阻碍了成功疫苗的开发。由于其化学变异性和复杂动态,聚糖的准确分子理解仍然受到当前实验方法缺乏有效分辨率的限制。在这里,我们基于流行的 Martini 2.2 粗粒力场开发并实施了一种还原模型,用于 N-糖基化的计算研究。我们使用 HIV-1 Env 作为高度糖基化蛋白的直接应用实例。我们的结果表明,该模型不仅能很好地再现许多可观测到的现象,与全原子力场非常吻合,而且还可以扩展到研究大量糖基化变体,这一基本特性有助于药物和疫苗的开发。

引用本文的文献

1
Computational analysis of the structural-functional dynamics of a Co-receptor proteoglycan.
Front Mol Biosci. 2025 Mar 25;12:1549177. doi: 10.3389/fmolb.2025.1549177. eCollection 2025.
2
Systematic Approach to Parametrization of Disaccharides for the Martini 3 Coarse-Grained Force Field.
J Chem Inf Model. 2025 Feb 10;65(3):1537-1548. doi: 10.1021/acs.jcim.4c01874. Epub 2025 Jan 17.
3
Microsecond dynamics control the HIV-1 Envelope conformation.
Sci Adv. 2024 Feb 2;10(5):eadj0396. doi: 10.1126/sciadv.adj0396.
4
5
HIV-1 Envelope Conformation, Allostery, and Dynamics.
Viruses. 2021 May 7;13(5):852. doi: 10.3390/v13050852.

本文引用的文献

2
Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail.
iScience. 2020 Nov 20;23(12):101836. doi: 10.1016/j.isci.2020.101836. eCollection 2020 Dec 18.
3
Visualization of the HIV-1 Env glycan shield across scales.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28014-28025. doi: 10.1073/pnas.2000260117. Epub 2020 Oct 22.
4
Extending the Martini Coarse-Grained Force Field to -Glycans.
J Chem Inf Model. 2020 Aug 24;60(8):3864-3883. doi: 10.1021/acs.jcim.0c00495. Epub 2020 Jul 23.
5
Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies.
Curr Opin HIV AIDS. 2020 Sep;15(5):267-274. doi: 10.1097/COH.0000000000000639.
6
Site-specific glycan analysis of the SARS-CoV-2 spike.
Science. 2020 Jul 17;369(6501):330-333. doi: 10.1126/science.abb9983. Epub 2020 May 4.
7
VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage.
Cell Host Microbe. 2020 Apr 8;27(4):531-543.e6. doi: 10.1016/j.chom.2020.01.027. Epub 2020 Mar 3.
8
Pitfalls of the Martini Model.
J Chem Theory Comput. 2019 Oct 8;15(10):5448-5460. doi: 10.1021/acs.jctc.9b00473. Epub 2019 Sep 24.
9
CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates.
Glycobiology. 2019 Apr 1;29(4):320-331. doi: 10.1093/glycob/cwz003.
10
Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth.
Cell Rep. 2018 Oct 23;25(4):893-908.e7. doi: 10.1016/j.celrep.2018.09.087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验