Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
J Am Chem Soc. 2021 Apr 21;143(15):5845-5854. doi: 10.1021/jacs.1c00592. Epub 2021 Mar 23.
Helical folding of randomly coiled linear polymers is an essential organization process not only for biological polypeptides but also for synthetic functional polymers. Realization of this dynamic process in supramolecular polymers (SPs) is, however, a formidable challenge because of their inherent lability of main chains upon changing an external environment that can drive the folding process (e.g., solvent, concentration, and temperature). We herein report a photoinduced reversible folding/unfolding of rosette-based SPs driven by photoisomerization of a diarylethene (DAE). Temperature-controlled supramolecular polymerization of a barbiturate-functionalized DAE (open isomer) in nonpolar solvent results in the formation of intrinsically curved, but randomly coiled, SPs due to the presence of defects. Irradiation of the randomly coiled SPs with UV light causes efficient ring-closure reaction of the DAE moieties, which induces helical folding of the randomly coiled structures into helicoidal ones, as evidenced by atomic force microscopy and small-angle X-ray scattering. The helical folding is driven by internal structure ordering of the SP fiber that repairs the defects and interloop interaction occurring only for the resulting helicoidal structure. In contrast, direct supramolecular polymerization of the ring-closed DAE monomers by temperature control affords linearly extended ribbon-like SPs lacking intrinsic curvature that are thermodynamically less stable compared to the helicoidal SPs. The finding represents an important concept applicable to other SP systems; that is, postpolymerization (photo)reaction of preorganized kinetic structures can lead to more thermodynamically stable structures that are inaccessible directly through temperature-controlled protocols.
随机卷曲线性聚合物的螺旋折叠不仅是生物多肽的基本组织过程,也是合成功能聚合物的基本组织过程。然而,在超分子聚合物(SPs)中实现这一动态过程是一个巨大的挑战,因为它们的主链在改变外部环境时具有固有不稳定性,这种外部环境可以驱动折叠过程(例如溶剂、浓度和温度)。在此,我们报告了一种由二芳乙烯(DAE)光异构化驱动的基于蔷薇花的 SPs 的光诱导可逆折叠/展开。由于存在缺陷,在非极性溶剂中,经巴比妥酸官能化的 DAE(开环异构体)的温度控制超分子聚合导致形成固有弯曲但随机卷曲的 SPs。用紫外光照射随机卷曲的 SPs 会引起 DAE 部分的有效闭环反应,这会诱导随机卷曲结构的螺旋折叠成螺旋形结构,这可以通过原子力显微镜和小角 X 射线散射来证明。螺旋折叠是由 SP 纤维的内部结构有序驱动的,该结构有序修复了缺陷和仅发生在所得螺旋形结构中的环间相互作用。相比之下,通过温度控制直接进行闭环 DAE 单体的超分子聚合会得到缺乏固有曲率的线性延伸带状 SPs,与螺旋形 SPs 相比,它们在热力学上不太稳定。这一发现代表了一个适用于其他 SP 系统的重要概念;也就是说,预组织的动力学结构的聚合后(光)反应可以导致更热力学稳定的结构,这些结构无法直接通过温度控制方案获得。