Suppr超能文献

用于临床光声成像的超分辨光声非负重建(SPANNER)。

Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging.

出版信息

IEEE Trans Med Imaging. 2021 Jul;40(7):1888-1897. doi: 10.1109/TMI.2021.3068181. Epub 2021 Jun 30.

Abstract

Photoacoustic (PA) imaging can revolutionize medical ultrasound by augmenting it with molecular information. However, clinical translation of PA imaging remains a challenge due to the limited viewing angles and imaging depth. Described here is a new robust algorithm called Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER), designed to reconstruct PA images in real-time and to address the artifacts associated with limited viewing angles and imaging depth. The method utilizes precise forward modeling of the PA propagation and reception of signals while accounting for the effects of acoustic absorption, element size, shape, and sensitivity, as well as the transducer's impulse response and directivity pattern. A fast superiorized conjugate gradient algorithm is used for inversion. SPANNER is compared to three reconstruction algorithms: delay-and-sum (DAS), universal back-projection (UBP), and model-based reconstruction (MBR). All four algorithms are applied to both simulations and experimental data acquired from tissue-mimicking phantoms, ex vivo tissue samples, and in vivo imaging of the prostates in patients. Simulations and phantom experiments highlight the ability of SPANNER to improve contrast to background ratio by up to 20 dB compared to all other algorithms, as well as a 3-fold increase in axial resolution compared to DAS and UBP. Applying SPANNER on contrast-enhanced PA images acquired from prostate cancer patients yielded a statistically significant difference before and after contrast agent administration, while the other three image reconstruction methods did not, thus highlighting SPANNER's performance in differentiating intrinsic from extrinsic PA signals and its ability to quantify PA signals from the contrast agent more accurately.

摘要

光声(PA)成像是一种利用分子信息增强医学超声的方法,可以使医学超声技术发生革命性的变化。然而,由于视场角和成像深度有限,光声成像的临床转化仍然是一个挑战。本文介绍了一种新的稳健算法,称为 Superiorized Photo-Acoustic Non-NEgative Reconstruction(SPANNER),该算法旨在实时重建 PA 图像,并解决与视场角和成像深度有限相关的伪影问题。该方法利用 PA 信号传播和接收的精确正向建模,同时考虑了声吸收、元件尺寸、形状和灵敏度以及换能器的脉冲响应和指向性模式的影响。使用快速的 superiorized 共轭梯度算法进行反演。将 SPANNER 与三种重建算法进行了比较:延迟和求和(DAS)、通用反向投影(UBP)和基于模型的重建(MBR)。这四种算法都应用于模拟和从组织模拟体模、离体组织样本以及患者前列腺的体内成像中获得的实验数据。模拟和体模实验突出了 SPANNER 与所有其他算法相比,将对比度与背景比提高 20dB 的能力,与 DAS 和 UBP 相比,轴向分辨率提高了 3 倍。将 SPANNER 应用于从前列腺癌患者获得的对比增强 PA 图像,在使用造影剂前后均产生了统计学上显著的差异,而其他三种图像重建方法则没有,从而突出了 SPANNER 在区分固有和外在 PA 信号以及更准确地量化造影剂 PA 信号方面的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验