Suppr超能文献

基于延迟相干因子(LCF)波束形成的 LED 光声成像的改进。

Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming.

机构信息

School of physics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.

Research and Business Development Division, CYBERDYNE INC, Rotterdam, The Netherlands.

出版信息

Med Phys. 2023 Dec;50(12):7525-7538. doi: 10.1002/mp.16780. Epub 2023 Oct 16.

Abstract

BACKGROUND

Owing to its portability, affordability, and energy-efficiency, LED-based photoacoustic (PA) imaging is increasingly becoming popular when compared to its laser-based alternative, mainly for superficial vascular imaging applications. However, this technique suffers from low SNR and thereby limited imaging depth. As a result, visual image quality of LED-based PA imaging is not optimal, especially in sub-surface vascular imaging applications.

PURPOSE

Combination of linear ultrasound (US) probes and LED arrays are the most common implementation in LED-based PA imaging, which is currently being explored for different clinical imaging applications. Traditional delay-and-sum (DAS) is the most common beamforming algorithm in linear array-based PA detection. Side-lobes and reconstruction-related artifacts make the DAS performance unsatisfactory and poor for a clinical-implementation. In this work, we explored a new weighting-based image processing technique for LED-based PAs to yield improved image quality when compared to the traditional methods.

METHODS

We are proposing a lag-coherence factor (LCF), which is fundamentally based on the combination of the spatial auto-correlation of the detected PA signals. In LCF, the numerator contains lag-delay-multiply-and-sum (DMAS) beamformer instead of a conventional DAS beamformer. A spatial auto-correlation operation is performed between the detected US array signals before using DMAS beamformer. We evaluated the new method on both tissue-mimicking phantom (2D) and human volunteer imaging (3D) data acquired using a commercial LED-based PA imaging system.

RESULTS

Our novel correlation-based weighting technique showed LED-based PA image quality improvement when it is combined with conventional DAS beamformer. Both phantom and human volunteer imaging results gave a direct confirmation that by introducing LCF, image quality was improved and this method could reduce side-lobes and artifacts when compared to the DAS and coherence-factor (CF) approaches. Signal-to-noise ratio, generalized contrast-to-noise ratio, contrast ratio and spatial resolution were evaluated and compared with conventional beamformers to assess the reconstruction performance in a quantitative way. Results show that our approach offered image quality enhancement with an average signal-to-noise ratio and spatial resolution improvement of around 20% and 25% respectively, when compared with conventional CF based DAS algorithm.

CONCLUSIONS

Our results demonstrate that the proposed LCF based algorithm performs better than the conventional DAS and CF algorithms by improving signal-to-noise ratio and spatial resolution. Therefore, our new weighting technique could be a promising tool to improve the performance of LED-based PA imaging and thus accelerate its clinical translation.

摘要

背景

与基于激光的替代方案相比,基于 LED 的光声(PA)成像是一种越来越受欢迎的方法,因为它具有便携性、经济性和节能性,主要用于浅表血管成像应用。然而,该技术存在信噪比低的问题,从而限制了成像深度。因此,基于 LED 的 PA 成像的视觉图像质量不是最佳的,特别是在亚表面血管成像应用中。

目的

组合线性超声(US)探头和 LED 阵列是基于 LED 的 PA 成像中最常见的实现方式,目前正在探索不同的临床成像应用。传统的延迟和求和(DAS)是基于线性阵列的 PA 检测中最常用的波束形成算法。旁瓣和与重建相关的伪影使得 DAS 性能不理想,不适合临床应用。在这项工作中,我们探索了一种新的基于加权的图像处理技术,用于基于 LED 的 PA,以与传统方法相比获得更好的图像质量。

方法

我们提出了一种滞后相干因子(LCF),它基于检测到的 PA 信号的空间自相关的组合。在 LCF 中,分子包含延迟-相干多倍求和(DMAS)波束形成器,而不是传统的 DAS 波束形成器。在使用 DMAS 波束形成器之前,在检测到的 US 阵列信号之间执行空间自相关操作。我们使用商业 LED 基于 PA 成像系统采集的组织模拟体模(2D)和人体志愿者成像(3D)数据评估了新方法。

结果

当与传统的 DAS 波束形成器结合使用时,我们的新型基于相关的加权技术显示出基于 LED 的 PA 图像质量的提高。体模和人体志愿者成像结果都直接证实,通过引入 LCF,可以改善图像质量,与 DAS 和相干因子(CF)方法相比,该方法可以减少旁瓣和伪影。通过评估信噪比、广义对比噪声比、对比比和空间分辨率,并与传统波束形成器进行比较,以定量方式评估重建性能。结果表明,与传统的基于 CF 的 DAS 算法相比,我们的方法提供了图像质量增强,平均信噪比和空间分辨率分别提高了约 20%和 25%。

结论

我们的结果表明,与传统的 DAS 和 CF 算法相比,所提出的基于 LCF 的算法通过提高信噪比和空间分辨率来提高性能。因此,我们的新加权技术可能是一种有前途的工具,可以提高基于 LED 的 PA 成像的性能,从而加速其临床转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验