Suppr超能文献

2008 年至 2017 年沙捞越间日疟原虫疟疾的时空分布模式。

Spatial and Temporal Patterns of Plasmodium knowlesi Malaria in Sarawak from 2008 to 2017.

机构信息

1Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Kuching, Malaysia.

2Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.

出版信息

Am J Trop Med Hyg. 2021 Mar 22;104(5):1814-1819. doi: 10.4269/ajtmh.20-1304.

Abstract

Zoonotic knowlesi malaria has replaced human malaria as the most prevalent malaria disease in Malaysia. The persistence of knowlesi malaria in high-risk transmission areas or hotspots can be discouraging to existing malaria elimination efforts. In this study, retrospective data of laboratory-confirmed knowlesi malaria cases were obtained from the Sarawak Health Department to investigate the spatiotemporal patterns and clustering of knowlesi malaria in the state of Sarawak from 2008 to 2017. Purely spatial, purely temporal, and spatiotemporal analyses were performed using SaTScan software to define clustering of knowlesi malaria incidence. Purely spatial and spatiotemporal analyses indicated most likely clusters of knowlesi malaria in the northern region of Sarawak, along the Sarawak-Kalimantan border, and the inner central region of Sarawak between 2008 and 2017. Temporal cluster was detected between September 2016 and December 2017. This study provides evidence of the existence of statistically significant Plasmodium knowlesi malaria clusters in Sarawak, Malaysia. The analysis approach applied in this study showed potential in establishing surveillance and risk management system for knowlesi malaria control as Malaysia approaches human malaria elimination.

摘要

动物源性疟疾病例基孔肯雅热已取代人类疟疾病例,成为马来西亚最常见的疟疾疾病。基孔肯雅热在高传播风险地区或热点地区的持续存在,可能会对现有的疟疾消除工作产生阻碍。在这项研究中,我们从沙捞越卫生部获得了实验室确诊的基孔肯雅热病例的回顾性数据,以调查 2008 年至 2017 年沙捞越州基孔肯雅热的时空分布模式和聚集情况。使用 SaTScan 软件进行了纯粹的空间、纯粹的时间和时空分析,以确定基孔肯雅热发病率的聚集情况。纯粹的空间和时空分析表明,2008 年至 2017 年间,沙捞越北部地区、沙捞越-加里曼丹边境沿线以及沙捞越内陆中部地区很可能存在基孔肯雅热聚集区。在 2016 年 9 月至 2017 年 12 月期间检测到时间聚集。本研究为马来西亚在接近消除人类疟疾的情况下,建立基孔肯雅热监测和风险管理系统提供了存在统计学意义的疟疾病例基孔肯雅热聚集的证据。本研究应用的分析方法在基孔肯雅热控制方面具有建立监测和风险管理系统的潜力。

相似文献

1
Spatial and Temporal Patterns of Plasmodium knowlesi Malaria in Sarawak from 2008 to 2017.
Am J Trop Med Hyg. 2021 Mar 22;104(5):1814-1819. doi: 10.4269/ajtmh.20-1304.
3
Spatial and Temporal Analysis of Infection in Peninsular Malaysia, 2011 to 2018.
Int J Environ Res Public Health. 2020 Dec 11;17(24):9271. doi: 10.3390/ijerph17249271.
4
Over two decades of Plasmodium knowlesi infections in Sarawak: Trend and forecast.
Acta Trop. 2017 Dec;176:83-90. doi: 10.1016/j.actatropica.2017.07.027. Epub 2017 Jul 30.
5
Updates on malaria incidence and profile in Malaysia from 2013 to 2017.
Malar J. 2020 Jan 31;19(1):55. doi: 10.1186/s12936-020-3135-x.
6
Profiling the imported human malaria in Sarawak, Malaysia in 2011-2019.
Trop Med Int Health. 2023 Jun;28(6):486-500. doi: 10.1111/tmi.13875. Epub 2023 Apr 12.
7
Epidemiology of indigenous Plasmodium knowlesi infection in Sarawak, 2011-2019.
Trop Med Int Health. 2022 Aug;27(8):705-718. doi: 10.1111/tmi.13788. Epub 2022 Jul 5.
9
Spatial analyses of Plasmodium knowlesi vectors with reference to control interventions in Malaysia.
Parasit Vectors. 2023 Oct 9;16(1):355. doi: 10.1186/s13071-023-05984-x.

引用本文的文献

1
Evidence of Submicroscopic Plasmodium knowlesi Mono-Infection in Remote Indigenous Communities in Kelantan, Peninsular Malaysia.
Am J Trop Med Hyg. 2023 Sep 25;109(5):1081-1085. doi: 10.4269/ajtmh.23-0184. Print 2023 Nov 1.
2
Predicting transmission risk across Peninsular Malaysia using machine learning-based ecological niche modeling approaches.
Front Microbiol. 2023 Feb 16;14:1126418. doi: 10.3389/fmicb.2023.1126418. eCollection 2023.
3
The history and current epidemiology of malaria in Kalimantan, Indonesia.
Malar J. 2022 Nov 14;21(1):327. doi: 10.1186/s12936-022-04366-5.
4
Plasmodium knowlesi: the game changer for malaria eradication.
Malar J. 2022 May 3;21(1):140. doi: 10.1186/s12936-022-04131-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验