Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China.
Eur Rev Med Pharmacol Sci. 2021 Mar;25(5):2281-2290. doi: 10.26355/eurrev_202103_25260.
Atrial fibrillation (AF) is the most common type of tachycardia. The major injury caused by AF is a systemic embolism. Although AF therapies have evolved substantially, the success rate of sinus rhythm maintenance is relatively low. The reason is the incomplete understanding of the AF mechanisms.
A Gene Expression Omnibus (GEO) dataset (GSE79768) was downloaded. Differentially expressed genes (DEGs) were identified by bioinformatic analysis. Enriched terms and pathways were identified by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was constructed to determine regulatory genes. CytoHubba and the Molecular Complex Detection (MCODE) algorithm were used to identify potential hub genes and important modules. The Predicting Associated Transcription Factors From Annotated Affinities (PASTAA) method was used to predict transcription factors (TFs).
Two hundred thirty-five upregulated DEGs and seventy-seven downregulated DEGs were identified. In the GO biological process, cellular component, and molecular function analyses, positive regulation of cell migration, anchoring junctions, and cell adhesion molecule binding were enriched significantly. The Hippo signalling pathway was the most significantly enriched pathway. In the PPI network analysis, we found that Class A/1 (rhodopsin-like receptors) may be the critical module. Ten hub genes were extracted, including 6 upregulated genes and 4 downregulated genes. CXCR2, TLR4, and CXCR4 may play critical roles in AF. In the TF prediction, we found that Irf-1 may be implicated in AF.
We found that the CXCR4, TLR4, CXCR2 genes, the Hippo signalling pathway and the class A/1 (rhodopsin-like receptors) module may play critical roles in AF occurrence and maintenance, which may provide novel targets for AF treatment.
心房颤动(AF)是最常见的心动过速类型。AF 引起的主要损伤是全身性栓塞。尽管 AF 治疗有了很大的发展,但维持窦性心律的成功率相对较低。原因是对 AF 机制的不完全了解。
下载基因表达综合数据集(GEO)(GSE79768)。通过生物信息学分析鉴定差异表达基因(DEGs)。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析鉴定富集术语和途径。构建蛋白质-蛋白质相互作用(PPI)网络以确定调节基因。使用 CytoHubba 和分子复合物检测(MCODE)算法识别潜在的枢纽基因和重要模块。使用预测关联转录因子从注释亲和力(PASTAA)方法预测转录因子(TFs)。
鉴定出 235 个上调 DEGs 和 77 个下调 DEGs。在 GO 生物过程、细胞成分和分子功能分析中,细胞迁移、锚定连接和细胞黏附分子结合的正调控显著富集。Hippo 信号通路是最显著富集的途径。在 PPI 网络分析中,我们发现 A 类/1(视紫红质样受体)可能是关键模块。提取了 10 个枢纽基因,包括 6 个上调基因和 4 个下调基因。CXCR2、TLR4 和 CXCR4 可能在 AF 中起关键作用。在 TF 预测中,我们发现 Irf-1 可能与 AF 有关。
我们发现 CXCR4、TLR4、CXCR2 基因、Hippo 信号通路和 A 类/1(视紫红质样受体)模块可能在 AF 的发生和维持中起关键作用,这可能为 AF 的治疗提供新的靶点。