Navakoteswara Rao Vempuluru, Ravi Parnapalle, Sathish Marappan, Vijayakumar Manavalan, Sakar Mohan, Karthik Mani, Balakumar Subramanian, Reddy Kakarla Raghava, Shetti Nagaraj P, Aminabhavi Tejraj M, Shankar Muthukonda Venkatakrishnan
Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India.
Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
J Hazard Mater. 2021 Aug 5;415:125588. doi: 10.1016/j.jhazmat.2021.125588. Epub 2021 Mar 11.
Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, CuS, BiS MoS CdSe and MoSe) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
金属硫族化合物在将太阳能转化为氢燃料的过程中起着至关重要的作用。氢燃料技术有可能通过取代石油、柴油和煤油等碳燃料来解决未来的能源危机,因为其碳排放为零且环保。金属硫族化合物分为窄带隙材料(硫化镉、硫化铜、硫化铋、硫化钼、硒化镉和硒化钼)和宽带隙材料(硫化锌、硒化锌和碲化锌)。这些材料的复合材料具有不同的结构,其中核壳结构是一种独特的复合材料,能显著提高光激子的分离效率,核中的硫族化合物能得到很好的保护以实现可持续利用。因此,核壳结构促进了具有所需特性的复合材料的设计与制备。有趣的是,作为核壳光催化剂的金属硫族化合物可分为I型、逆I型、II型和S型纳米复合材料,它们能有效影响并显著提高产氢速率。在此方向上,本综述旨在全面概述金属硫族化合物的先进制备工艺、性质,特别是作为核壳光催化剂用于太阳能制氢的光催化性能。