Suppr超能文献

使用高斯过程代理来捕捉材料行为不确定性,以改进重建手术设计。

Improving reconstructive surgery design using Gaussian process surrogates to capture material behavior uncertainty.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.

Lurie Children Hospital, Northwestern University, Chicago, IL, USA.

出版信息

J Mech Behav Biomed Mater. 2021 Jun;118:104340. doi: 10.1016/j.jmbbm.2021.104340. Epub 2021 Feb 9.

Abstract

To produce functional, aesthetically natural results, reconstructive surgeries must be planned to minimize stress as excessive loads near wounds have been shown to produce pathological scarring and other complications (Gurtner et al., 2011). Presently, stress cannot easily be measured in the operating room. Consequently, surgeons rely on intuition and experience (Paul et al., 2016; Buchanan et al., 2016). Predictive computational tools are ideal candidates for surgery planning. Finite element (FE) simulations have shown promise in predicting stress fields on large skin patches and in complex cases, helping to identify potential regions of complication. Unfortunately, these simulations are computationally expensive and deterministic (Lee et al., 2018a). However, running a few, well selected FE simulations allows us to create Gaussian process (GP) surrogate models of local cutaneous flaps that are computationally efficient and able to predict stress and strain for arbitrary material parameters. Here, we create GP surrogates for the advancement, rotation, and transposition flaps. We then use the predictive capability of these surrogates to perform a global sensitivity analysis, ultimately showing that fiber direction has the most significant impact on strain field variations. We then perform an optimization to determine the optimal fiber direction for each flap for three different objectives driven by clinical guidelines (Leedy et al., 2005; Rohrer and Bhatia, 2005). While material properties are not controlled by the surgeon and are actually a source of uncertainty, the surgeon can in fact control the orientation of the flap with respect to the skin's relaxed tension lines, which are associated with the underlying fiber orientation (Borges, 1984). Therefore, fiber direction is the only material parameter that can be optimized clinically. The optimization task relies on the efficiency of the GP surrogates to calculate the expected cost of different strategies when the uncertainty of other material parameters is included. We propose optimal flap orientations for the three cost functions and that can help in reducing stress resulting from the surgery and ultimately reduce complications associated with excessive mechanical loading near wounds.

摘要

为了达到功能和美学上的自然效果,重建手术必须精心规划以将张力最小化,因为已证明伤口附近的过度负载会导致病理性瘢痕和其他并发症(Gurtner 等人,2011)。目前,在手术室中很难轻松测量压力。因此,外科医生依赖于直觉和经验(Paul 等人,2016;Buchanan 等人,2016)。预测性计算工具是手术规划的理想候选者。有限元(FE)模拟已显示出在预测大皮肤补丁和复杂情况下的应力场方面具有潜力,有助于确定潜在的并发症区域。不幸的是,这些模拟计算成本高且确定性(Lee 等人,2018a)。然而,运行少数几个精选的 FE 模拟可以使我们创建局部皮肤瓣的高斯过程(GP)替代模型,这些模型计算效率高,能够预测任意材料参数的应力和应变。在这里,我们为推进瓣、旋转瓣和转位瓣创建了 GP 替代模型。然后,我们使用这些替代模型的预测能力来执行全局灵敏度分析,最终表明纤维方向对应变场变化的影响最大。然后,我们执行优化以确定三个不同目标(Leedy 等人,2005;Rohrer 和 Bhatia,2005)驱动的每个瓣的最佳纤维方向。虽然材料特性不由外科医生控制,实际上是不确定性的来源,但外科医生实际上可以控制瓣相对于皮肤松弛张力线的方向,这与下面的纤维方向有关(Borges,1984)。因此,纤维方向是唯一可以临床优化的材料参数。优化任务依赖于 GP 替代模型的效率,以计算包含其他材料参数不确定性时不同策略的预期成本。我们提出了三个成本函数的最佳瓣取向,这有助于减少手术引起的压力,最终减少与伤口附近过度机械加载相关的并发症。

相似文献

1
Improving reconstructive surgery design using Gaussian process surrogates to capture material behavior uncertainty.
J Mech Behav Biomed Mater. 2021 Jun;118:104340. doi: 10.1016/j.jmbbm.2021.104340. Epub 2021 Feb 9.
2
Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery.
Biomech Model Mechanobiol. 2018 Dec;17(6):1857-1873. doi: 10.1007/s10237-018-1061-4. Epub 2018 Aug 2.
3
Personalized Computational Models of Tissue-Rearrangement in the Scalp Predict the Mechanical Stress Signature of Rotation Flaps.
Cleft Palate Craniofac J. 2021 Apr;58(4):438-445. doi: 10.1177/1055665620954094. Epub 2020 Sep 11.
4
Application of finite element modeling to optimize flap design with tissue expansion.
Plast Reconstr Surg. 2014 Oct;134(4):785-792. doi: 10.1097/PRS.0000000000000553.
5
A Gaussian process approach for rapid evaluation of skin tension.
Acta Biomater. 2024 Jul 1;182:54-66. doi: 10.1016/j.actbio.2024.05.025. Epub 2024 May 13.
6
From the rhombic transposition flap toward Z-plasty: An optimized design using the finite element method.
J Biomech. 2015 Oct 15;48(13):3672-8. doi: 10.1016/j.jbiomech.2015.08.021. Epub 2015 Aug 24.
7
Simulation and optimization of reconstructive surgery procedures on human skin.
J Mech Behav Biomed Mater. 2022 Jul;131:105215. doi: 10.1016/j.jmbbm.2022.105215. Epub 2022 Apr 9.
8
10
Biomechanics of the rhombic transposition flap.
Otolaryngol Head Neck Surg. 2014 Dec;151(6):952-9. doi: 10.1177/0194599814551128. Epub 2014 Oct 10.

引用本文的文献

1
Generative Hyperelasticity with Physics-Informed Probabilistic Diffusion Fields.
Eng Comput. 2025 Feb;41(1):51-69. doi: 10.1007/s00366-024-01984-2. Epub 2024 May 18.
3
On modeling the multiscale mechanobiology of soft tissues: Challenges and progress.
Biophys Rev (Melville). 2022 Aug 15;3(3):031303. doi: 10.1063/5.0085025. eCollection 2022 Sep.
4
Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: application to planar soft tissues.
Comput Methods Appl Mech Eng. 2023 Feb 1;404. doi: 10.1016/j.cma.2022.115812. Epub 2022 Dec 10.
5
Analysis of In Vivo Skin Anisotropy Using Elastic Wave Measurements and Bayesian Modelling.
Ann Biomed Eng. 2023 Aug;51(8):1781-1794. doi: 10.1007/s10439-023-03185-2. Epub 2023 Apr 6.

本文引用的文献

1
Multiscale modeling meets machine learning: What can we learn?
Arch Comput Methods Eng. 2021 May;28(3):1017-1037. doi: 10.1007/s11831-020-09405-5. Epub 2020 Feb 17.
3
Directional dependent variation in mechanical properties of planar anisotropic porcine skin tissue.
J Mech Behav Biomed Mater. 2020 Apr;104:103693. doi: 10.1016/j.jmbbm.2020.103693. Epub 2020 Feb 11.
5
Using machine learning to characterize heart failure across the scales.
Biomech Model Mechanobiol. 2019 Dec;18(6):1987-2001. doi: 10.1007/s10237-019-01190-w. Epub 2019 Jun 25.
6
On the compressibility and poroelasticity of human and murine skin.
Biomech Model Mechanobiol. 2019 Aug;18(4):1079-1093. doi: 10.1007/s10237-019-01129-1. Epub 2019 Feb 26.
7
Multiscale characterization of heart failure.
Acta Biomater. 2019 Mar 1;86:66-76. doi: 10.1016/j.actbio.2018.12.053. Epub 2019 Jan 7.
8
A novel ultra-light suction device for mechanical characterization of skin.
PLoS One. 2018 Aug 8;13(8):e0201440. doi: 10.1371/journal.pone.0201440. eCollection 2018.
9
Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery.
Biomech Model Mechanobiol. 2018 Dec;17(6):1857-1873. doi: 10.1007/s10237-018-1061-4. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验