Peng Grace C Y, Alber Mark, Tepole Adrian Buganza, Cannon William R, De Suvranu, Dura-Bernal Salvador, Garikipati Krishna, Karniadakis George, Lytton William W, Perdikaris Paris, Petzold Linda, Kuhl Ellen
National Institutes of Health, Bethesda, Maryland, USA.
University of California, Riverside, USA.
Arch Comput Methods Eng. 2021 May;28(3):1017-1037. doi: 10.1007/s11831-020-09405-5. Epub 2020 Feb 17.
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.
机器学习在生物、生物医学和行为科学领域日益被视为一项有前景的技术。毫无疑问,这项技术在图像识别方面极其成功,并能立即应用于包括电生理学、放射学或病理学在内的诊断领域,在这些领域我们可以获取大量带注释的数据。然而,机器学习在预后方面往往表现不佳,尤其是在处理稀疏数据时。在这个领域,基于经典物理学的模拟似乎仍然不可替代。在本综述中,我们确定了生物医学科学中机器学习和多尺度建模可以相互受益的领域:机器学习可以将基于物理的知识以控制方程、边界条件或约束的形式整合起来,以处理不适定问题并稳健地处理稀疏和有噪声的数据;多尺度建模可以整合机器学习来创建替代模型、识别系统动力学和参数、分析敏感性并量化不确定性,以跨越不同尺度并理解功能的出现。着眼于生命科学中的应用,我们讨论了结合机器学习和多尺度建模的现状,确定了应用和机会,提出了开放性问题,并探讨了潜在的挑战和局限性。我们预计这将激发计算力学领域内的讨论,并吸引包括数学、统计学、计算机科学、人工智能、生物医学、系统生物学和精准医学在内的其他学科共同努力,为生物系统创建强大而高效的模型。