Suppr超能文献

共价有机框架纳滤膜作为一个高灵敏度仿生热敏传感平台。

Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation.

机构信息

Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.

Department of Chemistry, University of North Texas, Denton, TX, USA.

出版信息

Nat Commun. 2021 Mar 23;12(1):1844. doi: 10.1038/s41467-021-22141-z.

Abstract

Thermal sensation, which is the conversion of a temperature stimulus into a biological response, is the basis of the fundamental physiological processes that occur ubiquitously in all organisms from bacteria to mammals. Significant efforts have been devoted to fabricating artificial membranes that can mimic the delicate functions of nature; however, the design of a bionic thermometer remains in its infancy. Herein, we report a nanofluidic membrane based on an ionic covalent organic framework (COF) that is capable of intelligently monitoring temperature variations and expressing it in the form of continuous potential differences. The high density of the charged sites present in the sub-nanochannels renders superior permselectivity to the resulting nanofluidic system, leading to a high thermosensation sensitivity of 1.27 mV K, thereby outperforming any known natural system. The potential applicability of the developed system is illustrated by its excellent tolerance toward a broad range of salt concentrations, wide working temperatures, synchronous response to temperature stimulation, and long-term ultrastability. Therefore, our study pioneers a way to explore COFs for mimicking the sophisticated signaling system observed in the nature.

摘要

热感觉是将温度刺激转化为生物反应的过程,是从细菌到哺乳动物等所有生物体中普遍存在的基本生理过程的基础。人们已经做出了巨大努力来制造能够模拟自然微妙功能的人工膜;然而,仿生温度计的设计仍处于起步阶段。在此,我们报告了一种基于离子共价有机框架(COF)的纳米流控膜,该膜能够智能地监测温度变化,并以连续电势差的形式表达出来。亚纳通道中存在的高密度带电位点赋予了纳米流控系统优异的选择性,从而使热感觉灵敏度达到 1.27 mV K,优于任何已知的天然系统。该系统的潜在适用性通过其对广泛盐浓度、宽工作温度、对温度刺激的同步响应和长期超稳定性的优异耐受性得到了说明。因此,我们的研究为探索 COF 以模拟自然界中观察到的复杂信号系统开辟了一条道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21d1/7988099/14eb07f01659/41467_2021_22141_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验