Brown Francis, Dupont Clément
All Souls College, Oxford, Oxford, OX1 4AL UK.
Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France.
Commun Math Phys. 2021;382(2):815-874. doi: 10.1007/s00220-021-03969-4. Epub 2021 Feb 24.
We study open and closed string amplitudes at tree-level in string perturbation theory using the methods of single-valued integration which were developed in the prequel to this paper (Brown and Dupont in Single-valued integration and double copy, 2020). Using dihedral coordinates on the moduli spaces of curves of genus zero with marked points, we define a canonical regularisation of both open and closed string perturbation amplitudes at tree level, and deduce that they admit a Laurent expansion in Mandelstam variables whose coefficients are multiple zeta values (resp. single-valued multiple zeta values). Furthermore, we prove the existence of a motivic Laurent expansion whose image under the period map is the open string expansion, and whose image under the single-valued period map is the closed string expansion. This proves the recent conjecture of Stieberger that closed string amplitudes are the single-valued projections of (motivic lifts of) open string amplitudes. Finally, applying a variant of the single-valued formalism for cohomology with coefficients yields the KLT formula expressing closed string amplitudes as quadratic expressions in open string amplitudes.
我们使用在本文前篇(Brown和Dupont所著的《单值积分与双拷贝》,2020年)中发展的单值积分方法,研究弦微扰理论中树图水平的开弦和闭弦振幅。利用具有标记点的零亏格曲线模空间上的二面体坐标,我们定义了树图水平开弦和闭弦微扰振幅的一种规范正则化,并推断它们在曼德尔斯坦变量中允许劳伦展开,其系数为多重zeta值(分别对应单值多重zeta值)。此外,我们证明了存在一种动机劳伦展开,其在周期映射下的像为开弦展开,在单值周期映射下的像为闭弦展开。这证明了Stieberger最近的猜想,即闭弦振幅是开弦振幅(动机提升)的单值投影。最后,应用带系数上同调的单值形式主义的一个变体,得到了将闭弦振幅表示为开弦振幅二次表达式的KLT公式。