Suppr超能文献

零亏格下的单值积分与超弦振幅

Single-Valued Integration and Superstring Amplitudes in Genus Zero.

作者信息

Brown Francis, Dupont Clément

机构信息

All Souls College, Oxford, Oxford, OX1 4AL UK.

Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France.

出版信息

Commun Math Phys. 2021;382(2):815-874. doi: 10.1007/s00220-021-03969-4. Epub 2021 Feb 24.

Abstract

We study open and closed string amplitudes at tree-level in string perturbation theory using the methods of single-valued integration which were developed in the prequel to this paper (Brown and Dupont in Single-valued integration and double copy, 2020). Using dihedral coordinates on the moduli spaces of curves of genus zero with marked points, we define a canonical regularisation of both open and closed string perturbation amplitudes at tree level, and deduce that they admit a Laurent expansion in Mandelstam variables whose coefficients are multiple zeta values (resp. single-valued multiple zeta values). Furthermore, we prove the existence of a motivic Laurent expansion whose image under the period map is the open string expansion, and whose image under the single-valued period map is the closed string expansion. This proves the recent conjecture of Stieberger that closed string amplitudes are the single-valued projections of (motivic lifts of) open string amplitudes. Finally, applying a variant of the single-valued formalism for cohomology with coefficients yields the KLT formula expressing closed string amplitudes as quadratic expressions in open string amplitudes.

摘要

我们使用在本文前篇(Brown和Dupont所著的《单值积分与双拷贝》,2020年)中发展的单值积分方法,研究弦微扰理论中树图水平的开弦和闭弦振幅。利用具有标记点的零亏格曲线模空间上的二面体坐标,我们定义了树图水平开弦和闭弦微扰振幅的一种规范正则化,并推断它们在曼德尔斯坦变量中允许劳伦展开,其系数为多重zeta值(分别对应单值多重zeta值)。此外,我们证明了存在一种动机劳伦展开,其在周期映射下的像为开弦展开,在单值周期映射下的像为闭弦展开。这证明了Stieberger最近的猜想,即闭弦振幅是开弦振幅(动机提升)的单值投影。最后,应用带系数上同调的单值形式主义的一个变体,得到了将闭弦振幅表示为开弦振幅二次表达式的KLT公式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee1e/7940340/6a5f68c7596d/220_2021_3969_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验