Saha Arnab Priya, Sinha Aninda
<sup>1</sup>Centre for High Energy Physics, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
<sup>2</sup>Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada.
Phys Rev Lett. 2024 May 31;132(22):221601. doi: 10.1103/PhysRevLett.132.221601.
Motivated by quantum field theory (QFT) considerations, we present new representations of the Euler-Beta function and tree-level string theory amplitudes using a new two-channel, local, crossing symmetric dispersion relation. Unlike standard series representations, the new ones are analytic everywhere except at the poles, sum over poles in all channels, and include contact interactions, in the spirit of QFT. This enables us to consider mass-level truncation, which preserves all the features of the original amplitudes. By starting with such expansions for generalized Euler-Beta functions and demanding QFT-like features, we single out the open superstring amplitude. We demonstrate the difficulty in deforming away from the string amplitude and show that a class of such deformations can be potentially interesting when there is level truncation. Our considerations also lead to new QFT-inspired, parametric representations of the Zeta function and π, which show fast convergence.
受量子场论(QFT)相关考虑因素的推动,我们使用一种新的双通道、局部、交叉对称色散关系,给出了欧拉 - 贝塔函数和树图级弦理论振幅的新表示形式。与标准级数表示不同,新的表示形式在除极点外的所有地方都是解析的,对所有通道的极点求和,并包含接触相互作用,这符合量子场论的精神。这使我们能够考虑质量层级截断,它保留了原始振幅的所有特征。通过从广义欧拉 - 贝塔函数的此类展开式出发并要求类似量子场论的特征,我们挑选出了开弦超振幅。我们展示了偏离弦振幅进行变形的困难,并表明当存在层级截断时,一类这样的变形可能会很有趣。我们的考虑还导致了受量子场论启发的ζ函数和π的新参数表示形式,它们显示出快速收敛性。