Suppr超能文献

海洋在全球丙酮大气收支中的作用。

The role of the ocean in the global atmospheric budget of acetone.

作者信息

Fischer E V, Jacob D J, Millet D B, Yantosca R M, Mao J

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA.

出版信息

Geophys Res Lett. 2012 Jan;39(1). doi: 10.1029/2011gl050086. Epub 2012 Jan 13.

Abstract

Acetone is one of the most abundant carbonyl compounds in the atmosphere and it plays an important role in atmospheric chemistry. The role of the ocean in the global atmospheric acetone budget is highly uncertain, with past studies reaching opposite conclusions as to whether the ocean is a source or sink. Here we use a global 3-D chemical transport model (GEOS-Chem) simulation of atmospheric acetone to evaluate the role of air-sea exchange in the global budget. Inclusion of updated (slower) photolysis loss in the model means that a large net ocean source is not needed to explain observed acetone in marine air. We find that a simulation with a fixed seawater acetone concentration of 15 nM based on observations can reproduce the observed global patterns of atmospheric concentrations and air-sea fluxes. The Northern Hemisphere oceans are a net sink for acetone while the tropical oceans are a net source. On a global scale the ocean is in near-equilibrium with the atmosphere. Prescribing an ocean concentration of acetone as a boundary condition in the model assumes that ocean concentrations are controlled by internal production and loss, rather than by air-sea exchange. An implication is that the ocean plays a major role in controlling atmospheric acetone. This hypothesis needs to be tested by better quantification of oceanic acetone sources and sinks.

摘要

丙酮是大气中含量最为丰富的羰基化合物之一,在大气化学中发挥着重要作用。海洋在全球大气丙酮收支中的作用极不确定,过去的研究对于海洋是丙酮的源还是汇得出了相反的结论。在此,我们利用一个全球三维化学传输模型(GEOS-Chem)对大气丙酮进行模拟,以评估海气交换在全球收支中的作用。在模型中纳入更新后的(较慢的)光解损失意味着,无需大量的海洋净源来解释海洋空气中观测到的丙酮。我们发现,基于观测结果,固定海水丙酮浓度为15纳摩尔的模拟能够再现观测到的全球大气浓度和海气通量模式。北半球海洋是丙酮的净汇,而热带海洋是丙酮的净源。在全球尺度上,海洋与大气处于近乎平衡的状态。在模型中将丙酮的海洋浓度规定为边界条件,意味着假设海洋浓度由内部生成和损失控制,而非由海气交换控制。这意味着海洋在控制大气丙酮方面发挥着主要作用。这一假设需要通过对海洋丙酮源和汇进行更精确的量化来加以检验。

相似文献

1
The role of the ocean in the global atmospheric budget of acetone.
Geophys Res Lett. 2012 Jan;39(1). doi: 10.1029/2011gl050086. Epub 2012 Jan 13.
3
Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
Global Biogeochem Cycles. 1996 Mar;10(1):175-90. doi: 10.1029/95gb02743.
4
Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.
Environ Sci Technol. 2014 Oct 7;48(19):11312-9. doi: 10.1021/es503109p. Epub 2014 Sep 12.
5
A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry.
Environ Sci Technol. 2019 May 7;53(9):5052-5061. doi: 10.1021/acs.est.8b06205. Epub 2019 Apr 12.
6
Carbon dioxide and acetone air-sea fluxes over the southern Atlantic.
Environ Sci Technol. 2009 Jul 15;43(14):5218-22. doi: 10.1021/es8032617.
8
Global Air-Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions.
Ann Rev Mar Sci. 2019 Jan 3;11:227-248. doi: 10.1146/annurev-marine-010816-060704. Epub 2018 Aug 29.
10
Reactive VOC Production from Photochemical and Heterogeneous Reactions Occurring at the Air-Ocean Interface.
Acc Chem Res. 2020 May 19;53(5):1014-1023. doi: 10.1021/acs.accounts.0c00095. Epub 2020 May 5.

引用本文的文献

1
Impact of Model Spatial Resolution on Global Geophysical Satellite-Derived Fine Particulate Matter.
ACS EST Air. 2024 Jul 29;1(9):1112-1123. doi: 10.1021/acsestair.4c00084. eCollection 2024 Sep 13.
2
Estimating future climate change impacts on human mortality and crop yields via air pollution.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2400117121. doi: 10.1073/pnas.2400117121. Epub 2024 Sep 16.
4
Advances in Simulating the Global Spatial Heterogeneity of Air Quality and Source Sector Contributions: Insights into the Global South.
Environ Sci Technol. 2023 May 2;57(17):6955-6964. doi: 10.1021/acs.est.2c07253. Epub 2023 Apr 20.
6
Metabolism of key atmospheric volatile organic compounds by the marine heterotrophic bacterium Pelagibacter HTCC1062 (SAR11).
Environ Microbiol. 2022 Jan;24(1):212-222. doi: 10.1111/1462-2920.15837. Epub 2021 Nov 29.
7
Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution.
Atmos Chem Phys. 2014 Mar;14(5):2679-2698. doi: 10.5194/acp-14-2679-2014. Epub 2014 Mar 14.
8
North American acetone sources determined from tall tower measurements and inverse modeling.
Atmos Chem Phys. 2013 Mar 15;13(6):3379-3392. doi: 10.5194/acp-13-3379-2013. Epub 2013 Mar 25.
9
Constraining remote oxidation capacity with ATom observations.
Atmos Chem Phys. 2020 Jul;20(13):7753-7781. doi: 10.5194/acp-20-7753-2020. Epub 2020 Jul 3.
10
On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America.
Atmos Chem Phys. 2019 Jul;19(14):9097-9123. doi: 10.5194/acp-19-9097-2019. Epub 2019 Jul 17.

本文引用的文献

2
Carbon dioxide and acetone air-sea fluxes over the southern Atlantic.
Environ Sci Technol. 2009 Jul 15;43(14):5218-22. doi: 10.1021/es8032617.
3
Determination of acetone in seawater using derivatization solid-phase microextraction.
Anal Bioanal Chem. 2007 Jul;388(5-6):1275-82. doi: 10.1007/s00216-007-1324-x. Epub 2007 May 22.
4
Marine Vibrio species produce the volatile organic compound acetone.
Appl Environ Microbiol. 1995 Jan;61(1):44-7. doi: 10.1128/aem.61.1.44-47.1995.
5
Global air pollution crossroads over the Mediterranean.
Science. 2002 Oct 25;298(5594):794-9. doi: 10.1126/science.1075457.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验