Han Qiutong, Li Liang, Gao Wa, Shen Yan, Wang Lu, Zhang Yintong, Wang Xiaoyong, Shen Qing, Xiong Yujie, Zhou Yong, Zou Zhigang
Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15092-15100. doi: 10.1021/acsami.0c21266. Epub 2021 Mar 24.
The ZnInS/BiVO heterostructures were elegantly designed through assembling ZnInS nanosheets onto the surface of BiVO decahedrons. This composite photocatalyst exhibits efficient photocatalytic conversion of CO into CO with a detectable amount of CH in the presence of water vapor. An electron spin-resonance spectroscopy (ESR) technique and density function theory (DFT) calculation affirm the direct Z-scheme structure in ZnInS/BiVO. The larger surface photovoltage (SPV) change and the longer liquid photoluminescence (PL) lifetime of the heterostructure, compared to the individual ZnInS and BiVO components, demonstrate that the Z-scheme structure can effectively promote the recombination of the photogenerated holes in the valence band (VB) of the ZnInS nanosheet with the electrons in the conduction band (CB) of the decahedral BiVO and lead to the abundant electrons surviving in the CB of ZnInS and holes in the VB of BiVO, thus enhancing photocatalytic CO reduction performance. This study may make a potential contribution to the rational construction and deep understanding of the underlying mechanism of direct Z-schemes for advanced photocatalytic activity.
通过将ZnInS纳米片组装到BiVO十面体表面,巧妙地设计了ZnInS/BiVO异质结构。这种复合光催化剂在水蒸气存在下,能将CO高效光催化转化为CO,并产生可检测量的CH。电子自旋共振光谱(ESR)技术和密度泛函理论(DFT)计算证实了ZnInS/BiVO中存在直接Z型结构。与单独的ZnInS和BiVO组分相比,异质结构具有更大的表面光电压(SPV)变化和更长的液体光致发光(PL)寿命,这表明Z型结构可以有效地促进ZnInS纳米片价带(VB)中的光生空穴与十面体BiVO导带(CB)中的电子复合,从而使大量电子在ZnInS的CB中存活,空穴在BiVO的VB中存活,进而提高光催化CO还原性能。该研究可能为合理构建和深入理解直接Z型结构以实现先进光催化活性的潜在机制做出贡献。