Fink Michael, Rupitsch Stefan J, Lyer Stefan, Ermert Helmut
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2482-2495. doi: 10.1109/TUFFC.2021.3068791. Epub 2021 Jun 29.
Numerous medical applications make use of magnetic nanoparticles, which increase the demand for imaging procedures that are capable of visualizing this kind of particle. Magnetomotive ultrasound (MMUS) is an ultrasound-based imaging modality that can detect tissue, which is permeated by magnetic nanoparticles. However, currently, MMUS can only provide a qualitative mapping of the particle density in the particle-loaded tissue. In this contribution, we present an enhanced MMUS procedure, which enables an estimation of the quantitative level of the local nanoparticle concentration in tissue. The introduced modality involves an adjustment of simulated data to measurement data. To generate these simulated data, the physical processes that arise during the MMUS imaging procedure have to be emulated which can be a computing-intensive proceeding. Since this considerable calculation effort may handicap clinical applications, we further present an efficient approach to calculate the decisive physical quantities and a suitable way to adjust these simulated quantities to the measurement data with only moderate computational effort. For this purpose, we use the result data of a conventional MMUS measurement and the knowledge on the magnetic field quantities and on the mechanical parameters describing the biological tissue, namely, the density, the longitudinal wave velocity, and the shear wave velocity. Experiments on tissue-mimicking phantoms demonstrate that the presented technique can indeed be utilized to determine the local nanoparticle concentration in tissue quantitatively in the correct order of magnitude. By investigating test phantoms of simple geometry, the mean particle concentration of the particle-laden area could be determined with less than 22% deviation to the nominal value.
许多医学应用都使用磁性纳米颗粒,这增加了对能够可视化这类颗粒的成像程序的需求。磁动力超声(MMUS)是一种基于超声的成像方式,它可以检测被磁性纳米颗粒渗透的组织。然而,目前MMUS只能对负载颗粒的组织中的颗粒密度进行定性映射。在本论文中,我们提出了一种增强的MMUS程序,它能够估计组织中局部纳米颗粒浓度的定量水平。引入的这种方式涉及将模拟数据调整为测量数据。为了生成这些模拟数据,必须模拟MMUS成像过程中出现的物理过程,这可能是一个计算密集型过程。由于这种大量的计算工作可能会阻碍临床应用,我们进一步提出了一种有效的方法来计算决定性的物理量,以及一种仅需适度计算量就能将这些模拟量调整为测量数据的合适方法。为此,我们使用传统MMUS测量的结果数据以及关于磁场量和描述生物组织的力学参数(即密度、纵波速度和剪切波速度)的知识。在仿组织体模上进行的实验表明,所提出的技术确实可以用于定量确定组织中局部纳米颗粒浓度,且量级正确。通过研究简单几何形状的测试体模,含颗粒区域的平均颗粒浓度可以被确定,与标称值的偏差小于22%。