Suppr超能文献

基于盲源分离的运动探测器在磁致超声成像中用于成像超顺磁性氧化铁 (SPIO) 粒子。

Blind Source Separation-Based Motion Detector for Imaging Super-Paramagnetic Iron Oxide (SPIO) Particles in Magnetomotive Ultrasound Imaging.

出版信息

IEEE Trans Med Imaging. 2018 Oct;37(10):2356-2366. doi: 10.1109/TMI.2018.2848204. Epub 2018 Jun 15.

Abstract

In magnetomotive ultrasound (MMUS) imaging, an oscillating external magnetic field displaces tissue loaded with super-paramagnetic iron oxide (SPIO) particles. The induced motion is on the nanometer scale, which makes its detection and its isolation from background motion challenging. Previously, a frequency and phase locking (FPL) algorithm was used to suppress background motion by subtracting magnetic field off ( -off) from on ( -on) data. Shortcomings to this approach include long tracking ensembles and the requirement for -off data. In this paper, a novel blind source separation-based FPL (BSS-FPL) algorithm is presented for detecting motion using a shorter ensemble length (EL) than FPL and without -off data. MMUS imaging of two phantoms containing an SPIO-laden cubical inclusion and one control phantom was performed using an open-air MMUS system. When background subtraction was used, contrast and contrast to noise ratio (CNR) were, respectively, 1.20±0.20 and 1.56±0.34 times higher in BSS-FPL as compared to FPL-derived images for EL < 3.5 s. However, contrast and CNR were similar for BSS-FPL and FPL for EL ≥ 3.5 s. When only -on data was used, contrast and CNR were 1.94 ± 0.21 and 1.56 ± 0.28 times higher, respectively, in BSS-FPL as compared to FPL-derived images for all ELs. Percent error in the estimated width and height was 39.30% ± 19.98% and 110.37% ± 6.5% for FPL and was 7.30% ± 7.6% and 16.21% ± 10.29% for BSS-FPL algorithm. This paper is an important step toward translating MMUS imaging to in vivo application, where long tracking ensembles would increase acquisition time and -off data may be misaligned with -on due to physiological motion.

摘要

在磁激励超声(MMUS)成像中,外部振荡磁场会使加载超顺磁氧化铁(SPIO)颗粒的组织发生位移。这种诱导运动的幅度在纳米级,这使得其检测及其与背景运动的隔离具有挑战性。以前,曾使用频率和相位锁定(FPL)算法通过从“开”(-on)数据中减去“关”(-off)数据来抑制背景运动。这种方法的缺点包括跟踪集较长,以及需要 off 数据。本文提出了一种基于盲源分离的 FPL(BSS-FPL)算法,用于通过比 FPL 更短的集合长度(EL)和不使用 off 数据来检测运动。使用开放式 MMUS 系统对包含 SPIO 负载的立方嵌体的两个体模和一个对照体模进行 MMUS 成像。当使用背景减法时,与 FPL 衍生图像相比,当 EL < 3.5 s 时,BSS-FPL 的对比度和对比噪声比(CNR)分别高 1.20±0.20 和 1.56±0.34 倍。但是,当 EL ≥ 3.5 s 时,BSS-FPL 和 FPL 的对比度和 CNR 相似。当仅使用“开”数据时,在所有 EL 下,BSS-FPL 的对比度和 CNR 分别比 FPL 衍生图像高 1.94 ± 0.21 和 1.56 ± 0.28 倍。FPL 的估计宽度和高度的误差百分比为 39.30% ± 19.98%和 110.37% ± 6.5%,BSS-FPL 算法的误差百分比为 7.30% ± 7.6%和 16.21% ± 10.29%。本文是将 MMUS 成像转化为体内应用的重要一步,在体内应用中,长跟踪集将增加采集时间,并且由于生理运动,off 数据可能与 on 数据不对齐。

相似文献

3
On the Performance of Time Domain Displacement Estimators for Magnetomotive Ultrasound Imaging.针对磁激励超声成像的时域位移估计器性能研究。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):911-921. doi: 10.1109/TUFFC.2019.2903885. Epub 2019 Mar 8.

本文引用的文献

8
Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound.利用磁动力超声检测组织中的磁性纳米颗粒。
Nanotechnology. 2006 Aug 28;17(16):4183-90. doi: 10.1088/0957-4484/17/16/031. Epub 2006 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验