IEEE Trans Med Imaging. 2018 Oct;37(10):2356-2366. doi: 10.1109/TMI.2018.2848204. Epub 2018 Jun 15.
In magnetomotive ultrasound (MMUS) imaging, an oscillating external magnetic field displaces tissue loaded with super-paramagnetic iron oxide (SPIO) particles. The induced motion is on the nanometer scale, which makes its detection and its isolation from background motion challenging. Previously, a frequency and phase locking (FPL) algorithm was used to suppress background motion by subtracting magnetic field off ( -off) from on ( -on) data. Shortcomings to this approach include long tracking ensembles and the requirement for -off data. In this paper, a novel blind source separation-based FPL (BSS-FPL) algorithm is presented for detecting motion using a shorter ensemble length (EL) than FPL and without -off data. MMUS imaging of two phantoms containing an SPIO-laden cubical inclusion and one control phantom was performed using an open-air MMUS system. When background subtraction was used, contrast and contrast to noise ratio (CNR) were, respectively, 1.20±0.20 and 1.56±0.34 times higher in BSS-FPL as compared to FPL-derived images for EL < 3.5 s. However, contrast and CNR were similar for BSS-FPL and FPL for EL ≥ 3.5 s. When only -on data was used, contrast and CNR were 1.94 ± 0.21 and 1.56 ± 0.28 times higher, respectively, in BSS-FPL as compared to FPL-derived images for all ELs. Percent error in the estimated width and height was 39.30% ± 19.98% and 110.37% ± 6.5% for FPL and was 7.30% ± 7.6% and 16.21% ± 10.29% for BSS-FPL algorithm. This paper is an important step toward translating MMUS imaging to in vivo application, where long tracking ensembles would increase acquisition time and -off data may be misaligned with -on due to physiological motion.
在磁激励超声(MMUS)成像中,外部振荡磁场会使加载超顺磁氧化铁(SPIO)颗粒的组织发生位移。这种诱导运动的幅度在纳米级,这使得其检测及其与背景运动的隔离具有挑战性。以前,曾使用频率和相位锁定(FPL)算法通过从“开”(-on)数据中减去“关”(-off)数据来抑制背景运动。这种方法的缺点包括跟踪集较长,以及需要 off 数据。本文提出了一种基于盲源分离的 FPL(BSS-FPL)算法,用于通过比 FPL 更短的集合长度(EL)和不使用 off 数据来检测运动。使用开放式 MMUS 系统对包含 SPIO 负载的立方嵌体的两个体模和一个对照体模进行 MMUS 成像。当使用背景减法时,与 FPL 衍生图像相比,当 EL < 3.5 s 时,BSS-FPL 的对比度和对比噪声比(CNR)分别高 1.20±0.20 和 1.56±0.34 倍。但是,当 EL ≥ 3.5 s 时,BSS-FPL 和 FPL 的对比度和 CNR 相似。当仅使用“开”数据时,在所有 EL 下,BSS-FPL 的对比度和 CNR 分别比 FPL 衍生图像高 1.94 ± 0.21 和 1.56 ± 0.28 倍。FPL 的估计宽度和高度的误差百分比为 39.30% ± 19.98%和 110.37% ± 6.5%,BSS-FPL 算法的误差百分比为 7.30% ± 7.6%和 16.21% ± 10.29%。本文是将 MMUS 成像转化为体内应用的重要一步,在体内应用中,长跟踪集将增加采集时间,并且由于生理运动,off 数据可能与 on 数据不对齐。