Suppr超能文献

基于液相色谱-质谱法的研究中,减少批间效应而无需质控样品的归一化方法。

Normalization methods for reducing interbatch effect without quality control samples in liquid chromatography-mass spectrometry-based studies.

机构信息

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, 117997, Russia.

V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, 119334, Russia.

出版信息

Anal Bioanal Chem. 2021 May;413(13):3479-3486. doi: 10.1007/s00216-021-03294-8. Epub 2021 Mar 24.

Abstract

Data normalization is an essential part of a large-scale untargeted mass spectrometry metabolomics analysis. Autoscaling, Pareto scaling, range scaling, and level scaling methods for liquid chromatography-mass spectrometry data processing were compared with the most common normalization methods, including quantile normalization, probabilistic quotient normalization, and variance stabilizing normalization. These methods were tested on eight datasets from various clinical studies. The efficiency of the data normalization was assessed by the distance between clusters corresponding to batches and the distance between clusters corresponding to clinical groups in the space of principal components, as well as by the number of features with a pairwise statistically significant difference between the batches and the number of features with a pairwise statistically significant difference between clinical groups. Autoscaling demonstrated the most effective reduction in interbatch variation and can be preferable to probabilistic quotient or quantile normalization in liquid chromatography-mass spectrometry data.

摘要

数据标准化是大规模非靶向质谱代谢组学分析的重要组成部分。本文比较了自动缩放、Pareto 缩放、范围缩放和水平缩放方法与最常用的归一化方法,包括分位数归一化、概率商归一化和方差稳定归一化,用于处理液相色谱-质谱数据。这些方法在来自不同临床研究的 8 个数据集上进行了测试。通过主成分空间中对应批次的聚类之间的距离以及对应临床组的聚类之间的距离,以及批处理之间具有统计学显著差异的特征数量和临床组之间具有统计学显著差异的特征数量,评估了数据标准化的效率。自动缩放显示出减少批次间差异的最有效方法,并且在液相色谱-质谱数据中可以比概率商或分位数归一化更可取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验