Suppr超能文献

基于特征的非靶向代谢组学数据分子网络结果的统计分析

Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data.

作者信息

Pakkir Shah Abzer K, Walter Axel, Ottosson Filip, Russo Francesco, Navarro-Diaz Marcelo, Boldt Judith, Kalinski Jarmo-Charles J, Kontou Eftychia Eva, Elofson James, Polyzois Alexandros, González-Marín Carolina, Farrell Shane, Aggerbeck Marie R, Pruksatrakul Thapanee, Chan Nathan, Wang Yunshu, Pöchhacker Magdalena, Brungs Corinna, Cámara Beatriz, Caraballo-Rodríguez Andrés Mauricio, Cumsille Andres, de Oliveira Fernanda, Dührkop Kai, El Abiead Yasin, Geibel Christian, Graves Lana G, Hansen Martin, Heuckeroth Steffen, Knoblauch Simon, Kostenko Anastasiia, Kuijpers Mirte C M, Mildau Kevin, Papadopoulos Lambidis Stilianos, Portal Gomes Paulo Wender, Schramm Tilman, Steuer-Lodd Karoline, Stincone Paolo, Tayyab Sibgha, Vitale Giovanni Andrea, Wagner Berenike C, Xing Shipei, Yazzie Marquis T, Zuffa Simone, de Kruijff Martinus, Beemelmanns Christine, Link Hannes, Mayer Christoph, van der Hooft Justin J J, Damiani Tito, Pluskal Tomáš, Dorrestein Pieter, Stanstrup Jan, Schmid Robin, Wang Mingxun, Aron Allegra, Ernst Madeleine, Petras Daniel

机构信息

Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA.

University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany.

出版信息

Nat Protoc. 2025 Jan;20(1):92-162. doi: 10.1038/s41596-024-01046-3. Epub 2024 Sep 20.

Abstract

Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.

摘要

基于特征的分子网络(FBMN)是一种用于基于液相色谱-串联质谱的非靶向代谢组学数据的流行分析方法。虽然通过FBMN处理液相色谱-串联质谱数据相当精简,但下游数据处理和统计分析往往是关键瓶颈。尤其是刚接触统计分析的用户,难以有效处理和分析复杂的数据矩阵。在此,我们提供一份关于FBMN结果统计分析的综合指南,重点关注FBMN输出表的下游分析。我们解释数据结构以及数据清理和标准化的原则,以及FBMN结果的单变量和多变量统计分析。我们以两种脚本语言(R和Python)以及QIIME2框架为所有协议步骤(从数据清理到统计分析)提供解释和代码。所有代码均以Jupyter Notebook的形式共享(https://github.com/Functional-Metabolomics-Lab/FBMN-STATS)。此外,该协议还附带一个带有图形用户界面的网络应用程序(https://fbmn-statsguide.gnps2.org/),以降低新用户的入门门槛并用于教育目的。最后,我们还向用户展示如何使用Cytoscape可视化工具将其统计结果整合到分子网络中。在整个协议过程中,我们使用先前发表的环境代谢组学数据集进行演示。该协议、代码和网络应用程序共同为FBMN数据集成、清理和高级统计分析提供了完整的指南和工具箱,使新用户能够从其非靶向代谢组学数据中发现分子见解。我们的协议专为无缝分析全球天然产物社会分子网络的FBMN结果而定制,并且可以轻松适应其他质谱特征检测、注释和网络工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验